

University of Information Technology and Sciences (UITS), Dhaka

COURSE CURRICULUM for UNDERGRADUATE STUDIES (2018)

Department of Civil Engineering

November, 2018

Department of Civil Engineering

University of Information Technology and Sciences (UITS) Dhaka, Bangladesh.

Editorial Committee: Professor Dr. Md. Mazharul Hoque Dean, School of Science and Engineering, UITS Iftesham Bashar Head, CE, UITS Preetom Kishore Roy Head, Self-Assessment Committee, CE, UITS Md. Tarikul Islam Member, Self-Assessment Committee, CE, UITS Ahammad Kabir Member, Self-Assessment Committee, CE, UITS

DISCLAIMER

The Department of Civil Engineering and the University of Information Technology and Sciences (UITS) reserve the right to make, at any time without notice, changes in and addition to programs, courses, regulations, conditions governing the conduct of students, requirements for degrees, fees and any other information or statement contained in this booklet. In case of any anomaly, the rules and regulations published by UITS in its curriculum 'Rules and Regulations for Course System' and changes subsequently made to it will prevail. No responsibility will be accepted by the University or the Department of Civil Engineering for hardship or expenses encountered by its students or any other person or persons because of such changes.

Preface

(All praises to Almighty Allah-the Most Benevolent and Merciful)

We are extremely delighted to introduce the updated Booklet of Course Curriculum required for the B.Sc. in Civil Engineering Degree at the University of Information Technology and Sciences (UITS). This is the first ever endeavor entirely accomplished with the utmost care of the Faculties of the Department of Civil Engineering, UITS over about two years. The present Curriculum has been prepared after thorough study and examination of the Course Curriculum of the other reputed Universities.

The most striking feature of this Curriculum invokes the Philosophy of the much-needed delivery of the quality Outcome-Based-Education (OBE) in the Civil Engineering Program. The Curriculum has been significantly updated taking into considerations of the extensive discussions with all the stakeholders and has been vetted by renowned Curriculum specialists and senior Curriculum academicians of BUET. The UITS Institutional Quality Assurance Cell (IQAC) under HEQEP, UGC has been instrumental in the preparation of this comprehensive document. The booklet contains essential components of OBE Curriculum and includes rules and regulations for offering the courses, course requirements, missions-visions of the University and the Civil Engineering Department, list of Courses along with synopsis of individual Courses, Course Learning Outcomes (CLOs) linking with Program Learning Outcomes (PLOs), and Course Curriculum mapping.

We wish to take the opportunity to thank our excellent group of voluntary Editorial Board Members who have devoted their best and untiring efforts to keep the Curriculum review process moving. We would also like to convey my sincere gratitude to the internal and external Peer Reviewers, the Team of Experts from BUET and other reputed Universities who have provided their invaluable suggestions in

updating the Curriculum in its present state. It is expected that from now on, the Curriculum will be kept under review process on a regular basis to meet the demand and requirements of the society, country and local and international accreditation bodies.

As with the practice of any Course System guided by UGC, it is likely that some of the rules and regulations published in this Booklet may be modified in future. Students are, therefore, strongly advised to be in touch with their Head, Coordinators, and Faculty members regarding modifications, if any that may be introduced by the University at a later stage. It is expected that the Booklet will be a very useful guide to the Faculties, Coordinators, and undergraduate students of the Department of Civil Engineering.

Preetom Kishore Roy	Iftesham Bashar
Ahammad Kabir	Head
Md. Tarikul Islam	Department of Civil Engineering
Self Assessment Committee	

Table of Contents

Chapter -1:	Ger	neral Information	07
	1.1	Historical Background	07
	1.2	Academic Activities	07
	1.3	Schools and Teaching Departments	08
	1.4	University Administration	09
Chapter -2:	The	Department of Civil Engineering	10
	2.1	Introduction	10
	2.2	List of Faculty Members of Department of Civil Engineering	11
Chapter -3:	Rul Sys	es and Regulations for Course tem	20
Chapter-4:		urse Requirements for lergraduate Studies	41
	4.1	Introduction	41
	4.2	Course Requirements	41
	4.3	Summary of Course Requirements for Bachelor of Science in Civil Engineering Degree	46
	4.4	Courses Offered in Different Semesters for Bachelor of Science in Civil Engineering Degree	47
Chapter-5:	Cou	rse Curriculum Mapping for	102
	Unc	lergraduate studies	
	5.1	Vision and Mission of UITS	102
	5.2	Vision and Mission of Civil Engineering Department	103
	5.3	Program Objectives, Outcomes and Mapping	103

Chapter 1 General Information

1.1 HISTORICAL BACKGROUND

University of Information Technology and Sciences, abbreviated as UITS, is the first IT based institution for the study of Engineering, Pharmacy, Business, Law, Literature and Social Sciences in Bangladesh which was founded in 7 August 2003 as a non-profit organization. The PHP group headed by Alhaj Sufi Mohamed Mizanur Rahman is the sponsor of UITS. The guiding spirit behind the endeavor is "Divine blessings, mixed with hard work, backed by good intentions, can make miracles." The government was pleased to accord permission with effect from 07 August 2003 to function this University as per its Vision, Mission, Goals and Commitment to low cost quality education with moral, ethical and social values with a view to shape a complete, effective and efficient humane power. It endeavors to remain at the cutting edge of building knowledge and skills, integrated with human values and ethical practices in Bangladesh. It is a science and technological knowledge-based center of excellence that provides marketable skills for younger generations who may be gainfully employed both national and international organizations. The Department of Civil Engineering was opened in 2012 and with the approval of University Grant Commission (UGC), Bangladesh is now the largest Department with about 800 undergraduate students. The UITS campus is situated in the prominent area of the city of Dhaka. The physical expansion of the University over the last few years has been remarkably impressive with construction of new academic buildings, auditorium complex, students' halls of residences, medical centre, etc.

1.2 ACADEMIC ACTIVITIES

Undergraduate courses in the School of Science and Engineering usually extend over four years and lead to a B.Sc. Engineering Degree in Civil, Electrical and Electronic, Computer Science and Engineering, and Information Technology. Postgraduate studies and research have not been started in the Department of Civil Engineering but it will be among the primary functions of this university in near future. In addition, the university undertakes research programme sponsored by UITS and other outside organizations, e.g. WaterAid, University Grants Commission (UGC). The expertise of the university teachers and the laboratory facilities of the university are also utilized to solve problems of and to provide up-to-date engineering and technological knowledge to the various organizations of the country. UITS is persistent in its effort to improve its research facilities, staff position and courses and curricula to meet the growing technological challenges confronting the nation.

1.3 SCHOOLS AND TEACHING DEPARTMENTS

The University has ten teaching Departments under three Schools. All Departments offer Degree programs. School wise list of the Departments with the status of the Degrees offered is given below:

School of Science and Engineering

Department of Civil Engineering:	UG
Department of Electrical and Electronic Engineering	UG and PG
Department of Electronic and Communication Engineering	g UG
Department of Computer Science and Engineering:	UG and PG
Department of Information Technology	UG
Department of Pharmacy	UG

School of Business	
Department of Business Studies	UG and PG
School of Liberal Arts and Social Science	
Department of Law	UG
Department of English	UG and PG
Department of Social Work	UG and PG
* UG : Undergraduate	
PG : Postgraduate	

UNIVERSITY ADMINISTRATION

Vice Chancellor: **Professor Dr. Mohammed Solaiman** Treasurer: **Professor Dr. S.R. Hilaly List of Administrative Officers** Registrar: **Mohammad Kamrul Hasan** Controller of Examinations: **Professor A. N. M. Shareef** Director of Students Welfare: **Professor Dr. Nazrrul Islam**

Deans of Schools Dean of School of Science and Engineering: Professor Dr. Md Mazharul Hoque Dean of School of Business Studies: Professor Dr. Siraj Uddin Ahmed Dean of School of Liberal Arts and Social Science: Dr. Arifatul Kibria

Chapter 2 The Department of Civil Engineering

2.1 INTRODUCTION

The Department of Civil Engineering at UITS comprises of four major divisions: Environmental and Water Resources Engineering, Geotechnical Engineering, Structural Engineering, and Transportation Engineering. The divisions offer basic and advanced optional courses in the above disciplines. Research on the above fields is extremely important in the national context. These include areas like behavior of available building and road materials with emphasis on indigenous materials, engineering soil properties of various regions of the country, low-cost cyclone resistant housing, seismic zoning of Bangladesh, waste management, environmental pollution control, environmental impact assessment, traffic simulation, transport system modeling, traffic safety studies, etc. Some research projects of more fundamental nature viz. application of finite element techniques in tackling engineering problems, dynamic behavior of multistoried buildings, soil-structure interaction, concrete technology etc. pursued in this Department have greatly contributed to advancement of knowledge. To meet the national demand, the division of Environmental and Water Resources Engineering trains engineers specializing in hydrology, hydraulics, rain water harvesting, salinity intrusion, irrigation, drainage, flood control, land reclamation, bank protection, river stabilization, ground water, sedimentation problems and coastal engineering.

The course curriculum prepared following the requirements of BAETE and ABET has been assessed by the curriculum specialists of the Department of Civil Engineering, BUET. Strength lies with 21 full time faculties with degrees mostly from BUET and higher studies abroad like USA, Australia, and Canada etc.

2.2 LIST OF FACULTY MEMBERS OF DEPARTMENT OFCIVIL ENGINEERING

Assistant Professor & Headiftesham.bashar@uits.edu.bdiftesham.bashar@uits.edu.bd01912-141662PhD (pursuing currently) in Civil (Structural)Engineering at BUET. M.Sc in Civil (Structural) Engineering from BUET in 2012.B.Sc. in Civil Engineering, Bangladesh University of Engineering and TechnologyBUET. (BUET)	Ms. Iftesham Bashar	
	Assistant Professor & Head iftesham.bashar@uits.edu.bd 01912-141662 PhD (pursuing currently) in Civil (Structural) Engineering at BUET. M.Sc in Civil (Structural) Engineering from BUET in 2012. B.Sc. in Civil Engineering, Bangladesh University of	Static and Dynamic Analysis and design of structures. Analysis of precast and reinforced concrete beam- column connections Optimization of structures Retrofitting and

Prof. Dr. Md. Mazharu	l Hoque
Professor& Dean <u>mazharul@uits.edu.bd</u> 01715-007791 Ph.D., Monash University, Australia (Transportation Engineering) Post Doctoral (from Visiting Card) M. Engg., AIT, Thailand B.Sc.Engg. (Civil), BUET	Research Interests: Road safety; Accident investigation; Road traffic system; Traffic management; Public transportation planning and evaluation; Transport Economics, Non- motorised transport, Traffic Engineering and Design, Environmental Issues; Project Planning and Management.

Shaila Akter	
Assistant Professor <u>shaila.akter@uits.edu.bd</u> 01717372869 M. Phil Research Fellow, DU M.S, Mathematics, DU B.Sc. (Honors), Mathematics, DU	<u>Research Interests:</u> Complicated behavior on Dynamical System Riemann Manifolds on Differential Geometry Numerical Solution on Partial Differential Equation

Preetom Kishore Roy	
Assistant Professor preetom.kishore@uits.edu.bd 01717-832289 Grad Cert Course (2012) - University of Technology, Sydney, Australia. MSc- Bangladesh University of Engineering and Technology (BUET). BSc- Military Institute of Science and Technology, University of Dhaka.	<u>Research Interests:</u> Arsenic removal mechanism by adsorption- desorption capacity of nanoparticles Nanoparticle characterization Rainwater harvesting Sustainable house technologies, E- waste management

	Mahfuz Ibn Mannan	
	Assistant Professor	
	mahfuz.mannan@uits.edu.bd	<u>Research Interests:</u>
6 6	01720016111	Econophysics
62	M.S, University of Dhaka	
0	B.Sc. (Hon's), University of	Actuarial
	Dhaka	Mathematics
		Statistical Physics

Saraban Tahora	
Assistant Professor saraban.tahora@uits.edu.bd Ph.D. (Fellow), Department of Mathematics, University of Dhaka M.S. (Thesis), Applied Mathematics, Department of Mathematics, University of Dhaka B.Sc (Four years Hons.), Mathematics, Department of Mathematics, University of Dhaka	<u>Research Interests:</u> Project Work: Lattice of Fuzzy Numbers Thesis Work: Manifolds with Cohomology and Riemannian Geometry

	Md. Tarikul Islam	
(Gen	Assistant Professor	
	tarikul.islam@uits.edu.bd	Research Interests:
	01706543604	RCC & Composite
	B.Sc. in Civil Engineering,	Structures, Structural
-	Bangladesh University of	Safety.
	Engineering and	Urban Rainwater
	Technology (BUET)	Harvesting System.
		Decentralized
		Wastewater
		Management System.
		Database Management
		and Administration

Md. Mostafizur Rahman	
Assistant Professor mostafizur.rahman@uits.edu.bd 01918-998809 B.Sc. in Civil Engineering, Bangladesh University of Engineering and Technology (BUET). M.Sc. in Geotechnical Engineering (Ongoing), Bangladesh University of Engineering and Technology (BUET)	<u>Research</u> <u>Interests:</u> Soil dynamics Stress-deformation behaviour of Soil Soil Sampling Geotechnical behaviour of stabilised soils, Soil improvement.

Ahammad Kabir	
Assistant Professor ahammad.kabir@uits.edu.bd 01614-201002 B.Sc. in Civil Engineering, Bangladesh University of Engineering and Technology (BUET).	<u>Research Interests:</u> Composite Column. Structural Safety. Cost-Effective and safe Structures. Structural dynamics
M.Sc. in Structural Engineering (Ongoing), Bangladesh University of Engineering and Technology (BUET)	

	Romana Saila	
Contraction of the second seco	Assistant Professor romana.saila@uits.edu.bd 01716364541 Master of Engineering in Water Resources Engineering, University of Alberta, Edmonton, Canada. B.Sc. in Civil Engineering, Bangladesh University of Engineering and Technology (BUET).	<u>Research Interests:</u> Research on Water Supply Water Quality Sludge Wastewater Treatment and Modeling

	Ayesha Akhter	
	Assistant Professor	
	aysha.akter@uits.edu.bd	Research Interests:
freezen	01716110933	Study on coastal
6	M.Sc in Water Resources	erosion of
	Engineering, Bangladesh	Bangladesh.
	University of Engineering	Protective measures
	and Technology (BUET).	for coastal zone.
	B.Sc in Water Resources	Artificial beach
	Engineering, Bangladesh	nourishment
	University of Engineering	Investigate
	and Technology (BUET)	breakwater
		hydrodynamic
		performance for
		coastal defense.

Kamrun Naher Khan Mukti	
Assistant Professor kamrun.nahar@uits.edu.bd 01717-903747 Masters of Science (M Sc) in Geography & Environment- Jahangirnagar University (JU). Bachelor of Science (B Sc) in Geography & Environment- Jahangirnagar University (JU)	<u>Research</u> <u>Interests:</u> Water Pollution and its control GIS and Remote Sensing Landuse change Physiography

60
13/

Md. Hasan Imam

Assistant Professor hasan.imam@uits.edu.bd 01814-500523 B.Sc. in Civil Engineering, Bangladesh University of Engineering and Technology (BUET)

Research Interests: Structural Dynamics and Earthquake Engineering Foundation Engineering, sustainable structure strengthening of materials by FRP, Structural rehabilitation Concrete technology (bendable concrete)

PinkiDatta	
Lecturer <u>pinki.datta@uits.edu.bd</u> 01686879319 B.Sc.(4-years Hon's)Statistics-, Jahangirnagar University. M.S(1-year)Statistics, Jahangirnagar University.	<u>Research Interests:</u>

MaqsudaHaque	
Lecturer maqsuda.haque@uits.edu.bd 01915-878030 B.Sc. in Civil Engineering, Bangladesh University of Engineering and Technology (BUET)	<u>Research Interests:</u> Behavior of Deep Beams Structural Engineering Structural Dynamics Cost-Effective and safe Structures.

Mohiuddin Ahmed	
Lecturer mohiuddin.ahmed@uits.edu.bd 01716-605452 B.Sc. in Civil Engineering, University of Information Technology & Sciences (UITS). M.Sc. in Structural Engineering (Ongoing), Bangladesh University of Engineering and Technology (BUET).	<u>Research</u> <u>Interests:</u> Concrete Structures Analysis and Design Bridge Analysis and Design High Rise Building Design Cost Effective Structures

Md.SanullahShamim	
Lecturer sanaullah.shamim@uits.edu.bd 01927955653 M.Sc in Civil Engineering, BUET (Ongoing). Bachelor of Science in Civil Engineering, Rajshahi University of Engineering & Technology (RUET).	<u>Research</u> <u>Interests:</u> Pavement Design Traffic Engineering Soil dynamics Soil improvement

	Abdullah Al NurAshek	
	Abdullan Al NurAsnek Lecturer abdullah.ashek@uits.edu.bd 01521493660 M.Sc in Civil Engineering, BUET (Ongoing). B.Sc. in Civil Engineering,	<u>Research</u> <u>Interests:</u> Pavement Design ITS
	Bangladesh University of Engineering and Technology (BUET).	Transportation Planning Traffic Engineering

NazmusSakib Ahmed	
INazimusSakib Anned Lecturer nazmus.sakib@uits.edu.bd 01733732124 B.Sc. in Civil Engineering, Bangladesh University of Engineering & Technology (BUET).	Research Interests: Traffic Engineering Transportation Planning
	Planning Intelligent Transport System (ITS)

	Subrata Roy	
	Lecturer	
	subrata.roy@uits.edu.bd	<u>Research</u>
	01535118701	Interests:
	M.Sc in Civil Engineering,	Pavement
BU ET	Bangladesh University of	Design
	Engineering and Technology	Pavement
	(BUET) (Ongoing).	management
	B.Sc. in Civil Engineering,	Transportation
	Bangladesh University of	Economics
	Engineering and Technology	Highway
	(BUET).	Materials

Chapter 3 Rules and Regulations for Course System

The following are the rules and regulations for administering undergraduate course curriculum through the course system. The following articles have been reproduced from Rules and Regulations for Course System.

Rules, Regulations, Course Offering Evaluation and Grading

1. Organizational Framework of the Bachelor's Degree in Civil Engineering Program of the Course System

The undergraduate curriculum at University of Information Technology and Sciences (UITS) is based on the course system. The salient features of the course system are:

- (i) Reduction of the number of theoretical courses and examination papers to around five in each term,
- (ii) The absence of a pass or a fail on an annual basis,
- (iii) Continuous evaluation of student's performance,
- (iv) Introduction of some additional optional courses and thus enable students to select courses according to his/her interest as far as possible,
- (v) Opportunity for students to choose fewer or more courses than the normal course load depending on his/her capabilities and needs,
- (vi) The flexibility to allow the student to progress at his/her own pace depending on respective ability or convenience, subject to the regulations on credit and minimum Grade Point Average(GPA) requirements, and
- (vii) Promotion of teacher-student contact.

In the curriculum for the undergraduate programs, besides the professional courses pertaining to each discipline, there is a strong emphasis on acquiring a thorough knowledge in the basic sciences of Mathematics, Physics and Chemistry. Due importance is also given for the study of several subjects in Humanities and Social Sciences which, it is expected will help the student to interact more positively with the society. Thus, the course contents of the undergraduate programs provide a harmonious blend of basic sciences and their applications as well as their social relevance. The first two terms of Bachelor's Degree programs consist of courses in basic sciences, mathematics, humanities and social sciences, basic engineering and architecture subjects. The third and subsequent terms build directly on the knowledge of the basic subjects gained in the first two terms and go on to develop competence in specific disciplines.

2. Student Admission

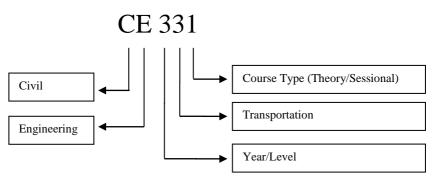
Students will be admitted in undergraduate curriculum in the Department of Civil Engineering through the existing rules of the University. The Registrar's Office will continue to serve with Admission Office and the Department will deal with course registration in addition to student admission.

3. Number of Semesters in a Year

There will be two semesters (Spring and Autumn) in an academic year.

The duration of each of Spring (Jan-Jun) and Autumn (Jul-Dec) will be 18 weeks which will be used as follows:

Classes	15 weeks
<i>Term-final examination (including Preparatory leave and intervals between Successive exams).</i>	3 weeks
Total	18 weeks


4. Course Pattern and Credit Structure

The entire undergraduate program is covered through a set of theoretical and laboratory/ sessional/ design courses.

4.1 Course Designation and Numbering System

Each course is designated by a two to four letter word identifying the Department and a three-digit number with the following criteria:

- (a) The first digit will correspond to the year/level in which the course is normally taken by the students.
- (b) The second digit will be reserved for Departmental use for such things as to identify different areas within a Department. For example, '1' stands for Environmental Engineering, '2' stands of Geotechnical Engineering, '3' stands for Transportation Engineering, '4' stands for Water Resources Engineering and '5' & '6' stand for Structural Engineering.
- (c) The last digit will usually be odd for theoretical and even for laboratory or sessional courses.

4.2 Assignment of Credits

- Theoretical Courses
 One lecture per week per semester will be equivalent to one credit
- (ii) Laboratory/ Sessional/ Design

Credits for laboratory/sessional or design courses will be half of the class hours per week per semester.

Credits are also assigned to project and thesis work taken by students. The amount of credits assigned to such work may vary from discipline to discipline.

The curriculum does not demand the same rate of academic progress from all students for obtaining the degree but only lays down the pace expected from a normal student. A student whose background or capacity for assimilation is lower will be permitted to complete the program at a slower pace by studying less number of courses during a given semester (subject to a minimum course load). He may keep pace with his class by taking those courses in the following semesters which he had dropped during the regular semesters, or by covering the entire degree program over an extended period without developing any feeling of inferiority complex.

5. Types of Courses

The courses included in undergraduate curriculum is divided into several groups as follows:

5.1 Core Courses

In each discipline a number of courses will be identified as core courses which form the nucleus of the respective Bachelor's Degree program. A student has to complete all of the designated core courses for his discipline.

5.2 Pre-requisite Courses

Some of the core courses are identified as pre-requisite courses. A prerequisite course is one which is required to be completed before some other course(s) can be taken. Any such course, on which one or more subsequent courses build up, may be offered in each of the two regular semesters.

5.3 Optional Courses

Apart from the core courses, students will have to complete a number of courses which are optional in nature in that students will have some choice to choose the required number of courses from a specified group/ number of courses.

6. Course Offering and Instruction

The courses to be offered in a particular semester will be announced and published in the Course Catalogue along with a tentative Semester Schedule before the end of the previous semester. Whether a course is to be offered in any semester will be decided by the Department. The Department may arrange to offer one or more prerequisite or core courses in any semester depending on the number of students who dropped or failed the course in the previous semester.

Each course is conducted by a teacher. The course teacher is responsible for maintaining the expected standard of the course and for the assessment of student's performance.

For a course strength necessitating two or more parallel classes or sections, one of the course teachers or any other member of the teaching staff of the Department is designated as course batch coordinator. He/she has the full responsibility for coordinating the work of the other members of the Department involved in that course.

7. Departmental Monitoring Committee

Consistent with its resilient policy to keep pace with new developments in the field of science and technology, the university will update its course curriculum at frequent intervals (at least every three years). Such updating aims not only to include the expanding frontiers of knowledge in the various fields but also to accommodate the changing social, industrial and professional need of the country. This can be done through deletion and modification of some of the courses and also through the introduction of new ones. The Department will constitute a Departmental Monitoring Committee with three teachers of the Department. This committee will monitor and evaluate the performance of the Course System within the

Department. In addition to other teachers of the Department, the committee may also propose any changes and modifications needed for upgrading the Undergraduate Curriculum and the Course System from time to time to the Academic and Planning Committees of the Department.

8. Teacher Student Contact

The proposed system encourages students to come in close contact with teachers. For promotion of teacher-student contact, each student is assigned to adviser/batch coordinator and the student is free to discuss with his Batch Coordinator all academic matters, especially those related to courses taken and classes being attended by him. Students are also encouraged to meet with other teachers any time for help on academic and extra-curricular matters.

9. Student Adviser/Batch Coordinator

One adviser/batch coordinator would normally be appointed for a batch of student by the Department who will advise each student on the courses to be taken by the student. The batch coordinator will discuss with the student on his/her academic program and then decide the number and nature of courses for which he/she can register. However, it is the student's responsibility to keep contacts with his batch coordinator who will review and eventually approve the student's specific plan of study and check on subsequent progress.

For a student of second and subsequent semesters, the number and nature of courses for which he/she can register will be decided on the basis of his/her academic performance during the previous semester. The batch coordinator will advise the students to register for the courses during the next semester within the framework of the guidelines in respect of minimum/maximum credit hours limits, etc. which are elaborated at appropriate places in this report. The batch coordinator is also authorized to permit the student to drop one or more courses based on his/her academic performance and the corresponding categorization.

10. Registration Requirements

Any student who makes use of class room or laboratory facilities or faculty time is required to register formally. Being admitted to the University, each student is assigned to a student batch coordinator. The student can register for courses he intends to take during a given semester only on the basis of the advice and consent of his/her coordinator.

10.1 Registration Procedure

Students must register for each class in which they want to participate in consultation with his/her coordinator. This can be done online within a specified deadline at <u>http://ucam.uits.edu.bd</u> where a student can select courses in the online course registration form. The student is then required to meet his/her coordinator to finalize and confirm the registration. Much counseling and advising is accomplished at the registration time. It is absolutely necessary that all students register at the specified time.

10.2 Limits on the Credit Hours to be taken

A student must be enrolled in at least 12 credit hours. He may be allowed to enroll in up to a maximum of 24 credit hours if recommended by his/her Adviser. A student must enroll for the prescribed sessional/laboratory courses in the respective semester within the allowed credit-hour limits. In special cases where a student cannot be allotted the minimum required 12 credit hours in a semester, the Department may approve a lesser number of credit hours to suit individual requirements. Such cases shall only be applicable to students needing less than 12 credits for graduation.

10.3 Pre-condition for Registration

Some courses involve pre-requisite courses. Students will be allowed to register in those courses subject to the satisfaction of prerequisite courses. If a student fails in a pre-requisite course in any semester, the Department may allow him to register for a course which builds on the pre-requisite course provided his/her attendance and grades in continuous assessment in the said pre-requisite course is found to be satisfactory.

Registration will be done at the beginning of each semester. The Registration program with dates and venue will be announced in advance. Late registration is, however, permitted according to the yearly academic calendar on payment of a late registration fee with permission of the authority. Students having outstanding dues to university shall not be permitted to register. All students have, therefore, to clear their dues and get a clearance or no dues certificate, on the production of which, they will be given necessary permission to complete the course registration procedure. For the first year students, prior Department-wise enrolment/admission is mandatory. A Departmental pre-orientation program may be conducted for them at the beginning of the first semester when they will be handed over the registration package on producing enrollment slip/proof of admission.

10.4 Pre-registration

Pre-registration for courses to be offered by the students in a particular semester will be done on a specified dates before the end of the previous term. All students in consultation with their course coordinators are required to complete the pre-registration formalities. If a student who does not pre-register, may not get the courses desired by him subsequently.

10.5 Registration Deadline

Student must register for the courses to be taken before the commencement at a due date within the first 2 weeks in each semester and no late registration will be accepted after one 6^{th} week of classes. Late registration after this date will not be accepted unless the student submits a written appeal to the Registrar through the concerned Head and can document extenuating circumstances such as medical problems(physically in capacitated and not able to be presented) from a medical officer of the university or other hospitals.

10.6 Penalty for Late Registration

Students who fail to register during the designated date for registration are charged a late registration fee of Tk. 300.00 (three hundred taka only). This extra fee will not be waived whatever be the reason for late registration.

10.7 Course Adjustment Procedure

A student will have some limited options to add or delete & dropping courses from his/her registration list, within the first six weeks from the beginning of the class. However, minimum credit requirements mentioned in the article 10.2 need to be fulfilled after the adjustments. He/She may add courses only within the first six weeks of a regular semester. In case of dropping a course a student will be allowed to do so within six weeks after the commencement of a regular semester. Adjustment of initially registered courses in any semester can be done by duly completing the **Course Adjustment Form.** These forms will normally be available in the Registrar's Office. For freshman students such forms can be included in the registration packet at the time of orientation.

Any student willing to add or drop courses will have to fill up a Course Adjustment Form in consultation with and under the guidance of his/her coordinator. The original copy of the Course Adjustment Form will be submitted to the Registrar's Office, and then the requisite number of photo copies will be made by the Registrar's Office for distribution to the concerned batch coordinator, Head, Dean, Controller of Examination and the student.

All changes in courses must be approved by the batch coordinator and the Head of the Department concerned. The Course Adjustment Form will have to be submitted to the Registrar's Office after duly filled in and signed by the concerned persons. To add/drop a course respective teacher's consent will be required. Late Registration Fee is not necessary in these cases.

10.8 Withdrawal from a Semester

If a student is unable to complete the Semester Final Examination due to serious illness or serious accident, he/she may apply to the Head of the Department for total withdrawal from the semester within a week after the end of the Semester Final Examination. However, he/she may choose not to withdraw any laboratory / sessional / design course if the grade obtained in such a course is 'D' or better. The application must be supported by a medical certificate from the Medical Officer of the University or other Hospital. The Academic Council will take the final decision about such application.

11. The Grading System

The total performance of a student in a given course is based on a scheme of continuous assessment. For theory courses this continuous assessment is made through a set of guizzes/in class evaluation, class homework assignments, and participation, a semester final examination. The assessment in laboratory/sessional courses is made through observation of the student at work in class, viva-voce during laboratory hours, and guizzes. As discussed earlier, each course has a certain number of credits which describe its weightage. A letter grade with a specified number of grade points is awarded in each course for which a student is registered. A student's performance is measured by the number of credits that he/she has completed satisfactorily and the weighted average of the grade points that he/she has maintained. A minimum grade point average is required to be maintained for satisfactory progress. Also a minimum number of earned credits should be acquired in order to qualify for the degree as prescribed.

Letter grades and corresponding grade-points will be awarded in accordance with provisions shown below:

Numerical grade	Letter Grade	Grade Point	
80% or above	A+ (A plus)	4.00	
75% to less than 80%	A (A regular)	3.75	
70% to less than 75%	A- (A minus)	3.50	

0
5
0
5
0
0
-

(for project & thesis / design courses)

11.1 Distribution of Marks

Thirty percent (30%) of marks shall be allotted for continuous assessment i.e., quizzes, class tests and homework assignments, in class evaluation and class participation. The remainder of the marks will be allotted to semester final examination which will be conducted centrally by the University. There will be internal and external examiners for each course in the term Final Examination. The duration of each semester final examination will be 3 hours. The distribution of marks for a given course will be as follows:

(i)	Class Attendance	10%
(ii)	Class Test/ Class Assessment	20%
(iii)	Final Examination (3 hours)	70%

Total

100%

Basis for awarding marks for class participation and attendance is generally as follows:

Attendance	Marks
90% and above	10

85% to less than 90%	9
80% to less than 85%	8
75% to less than 80%	7
70% to less than 75%	6
65% to less than 70%	5
60% to less than 65%	4
Less than 60%	0

"The Class Test/ Class Assessment Marks may comprise of Class Tests and Assignments. The Number of Class Tests of a course shall be at lease 'N+1', where 'N' is the number of credits of the course. Evaluation of the performance in Class Tests will be on the basis of the best 'N' Class Tests."

For 2 credit courses 2 best out of 3, for 3 credit courses 3 best out of 4, and for 4 credit courses 4 best out of 5 class tests may be considered for awarding grade. These may be considered as the minimum recommended number of class tests for any course.

12. Earned Credits

The courses in which a student has obtained `D' or a higher Grade will be counted as credits earned by him/her. Any course on which a student has obtained `F' grade will not be counted towards his/her earned credits. A student who obtains an `F' grade in any Core Course in any term, he/she will have to repeat the course. If a student obtains an `F' grade in an Optional Course, he/she may choose to repeat the course or take a substitute course if available.

13. Honors

Candidates for Bachelor's Degree in Civil Engineering will be awarded the Degree with honors if their overall GPA is 3.75 or higher.

13.1 Dean's List

As a recognition of excellent performance, the names of students obtaining an average GPA of 3.75 or above in two regular Terms in

each academic year may be published in the Dean's List in School of Science and Engineering. Students who have received 'F' grade in any course during any of the two regular terms will not be considered for Dean's List in that year.

14. Calculation of GPA

Grade Point Average (GPA) is the weighted average of the grade points obtained in all the courses passed/completed by a student. For example, if a student passes/completes five courses in a semester having credits of C1, C2, C3, C4, and C5 and his grade points in these courses are G1, G2, G3, G4, and G5, respectively then

$$GPA/CGPA = \frac{\sum CnGn}{\sum Cn}$$

Suppose a student got grade point "4.0" in a 3 credit hours course and "3.5" in 1.5 credit hours course then his/her GPA/CGPA will be as follows:

$$GPA/CGPA = \frac{(3\times4) + (1.5\times3.5)}{3+1.5} = 3.83$$

15. Student Classification

For a number of reasons it is necessary to have a definite system by which to classify students as First Year/Level 1, Second Year/Level2, Third Year/Level 3, and Fourth Year/Level 4. At UITS, regular students are classified according to the number of credit hours earned towards a degree. The following classification applies to the students.

16. Registration for the Second and Subsequent Terms

A student is normally required to earn at least 12 credits in a semester. At the end of each semester, the students will be classified into the following two categories:

Category 1

Consisting of students who have passed all the courses prescribed for the previous semester and have no backlog of courses. A student belonging to *Category 1* will be eligible to register for all courses prescribed for the next semester.

Category 2

Consisting of students who have earned at least 12 credits in the semester but do not belong to *Category 1*. A student belonging to *Category 2* is advised to take one or two backlog courses along with all the courses in the next semester subject to the condition that he/she has to register for such backlog courses as may be prescribed by the batch coordinator.

17. Performance Evaluation

The performance of a student will be evaluated in terms of two indices, viz. semester grade point average, and cumulative grade point average, which is the grade average for all the semesters. The semester grade point average is computed dividing the total grade points earned in a semester by the number of semester hours taken in that semester. The overall or cumulative grade point average (CGPA) is computed by dividing the total grade points accumulated up to date by the total credit hours earned. Thus a student who has earned 275 grade points in attempting 100 credit hours of courses would have an overall grade point average of 2.75.

Students will be considered to be making normal progress toward a degree if their cumulative or overall GPA for all work attempted is 2.25 or more. Students who regularly maintain Semester GPA of 2.25 or better are making good progress toward their degrees and are in good standing with the University. Students who fail to maintain this minimum rate of progress will not be in good standing. This can happen when one or more of the following conditions exist:

- (i) Semester GPA falls below 2.25 or
- (ii) Cumulative GPA falls below 2.25

All such students can make up deficiencies in GPA and credit requirements by completing courses in next semester(s) and backlog courses, if there be any, with better grades. When GPA and credit requirements are achieved, the student is returned to good standing.

18. Academic Progress, Probation and Suspension

<u>Academic Progress:</u> Undergraduate students will be considered to be making normal progress toward a Degree if their cumulative or overall GPA for all work attempted is not less than 2.25.

<u>Probation and Suspension:</u> Undergraduate students who regularly maintain Semester GPA of 2.25 or better are making good progress toward their Degrees and are in good standing with the university. Students who fail to maintain this minimum rate of progress may be placed on academic probation.

The status of academic probation is a reminder/warning to the student that satisfactory progress towards graduation is not being made. A student may be placed on academic probation when either of the following conditions exists:

- (i) The semester GPA falls below 2.25 or
- (ii) The cumulative GPA falls below 2.25

Students on probation are subject to such restrictions with respect to courses and extracurricular activities as may be imposed by the respective Dean of School.

The minimum period of probation is one Semester, but the usual period is for one academic year. This allows the student an opportunity to improve the GPA through the completion of additional course work during the period that the student is on probation. The probation is extended for additional semesters until the student achieves an overall GPA of 2.25 or better. When that condition is achieved the student is returned to good standing.

19. Measures for Helping Academically Weak Students

The following provisions will be made as far as possible to help academically weak students to enable them to complete their studies within the maximum period of six years in engineering:

- a) All such students whose cumulative grade point average (CGPA) are less than 2.25 at the end of a semester may be given a load of not exceeding four courses in the next semester.
- b) For other academic deficiencies, some basic and core courses may be offered in the next semester in order to enable the student to partially make-up for the backlog courses.

Following criteria will be followed for determining academically weak students:

- a) CGPA falling below 2.25.
- b) Semester grade point average (SGPA) falling below 2.25 points below that of previous semester.
- c) Earned credit falling below 12 times the number of semesters attended.

20. Special Courses

a) These courses, which include self-study/tutorial/special courses, will be from amongst the regular courses listed in the course catalog, a special course can be run only in exceptional cases with the approval of the Academic council.

b) Whether a course is to be floated as a special course will be decided by the Head of concerned Department in consultation with the teacher/course co-coordinator concerned if it is required to be offered in the following semesters.

c) The special course may be offered to any student at any semester if it helps students for graduation. It will be offered only if the course is not running in that semester as a regular course.

d) Normally no lecture will be delivered for the special course but laboratory/design classes may be held if they form a part of the course. The course coordinator/course teacher will also assign home works; administer quizzes/class tests and final examination for giving his or her assessments at the end of the semester.

21. Minimum Earned Credit and GPA Requirements for Obtaining Graduation

Minimum credit hour requirements for the award of Bachelor of Science (B.Sc.) Degree in Engineering will be decided by the respective Degree Awarding Committee of the Department. However, total 160.0 credit hours for Civil Engineering must be earned to be eligible for graduation, and this must include the specified core courses.

The minimum Cumulative Grade Point Average (CGPA) requirement for obtaining Bachelor of Science in Civil Engineering Degree is 2.25.

21.1 Application for Graduation and Award of Degree

A student who has fulfilled all the academic requirements for Bachelor's Degree will have to apply to the Controller of Examinations through his/her Head for graduation. Provisional Degree will be awarded on completion of credit and GPA requirements. Such provisional Degrees will be confirmed by the Academic Council.

22. Industrial/Professional Training Requirements

Depending on each Department's own requirement a student may have to complete a prescribed number of days of industrial/professional training in addition to minimum credit and other requirements, to the satisfaction of the concerned department.

Letter grade 'S' may be used for Satisfactory

Letter grade 'U' may be used for Unsatisfactory

In case of Unsatisfactory Performance he/she has to repeat the Industrial/Professional Training until he/she has earned 'S' grade.

23. Credit Transfer Policy

Transfer of credit from institutions having equivalent curriculum, comparable grading system, and grading standard will be up to a maximum of 40% of the credits which are required for graduation. Transfer of credit will be considered only after a student enrolls in the respective program fulfilling the admission requirements as laid down for regular students. The Departmental Academic and Planning Committee will evaluate and make necessary equivalence for courses according to the university credit transfer policy. The Academic and planning committees of the Department will provide final approval for the courses to be completed at UITS for Bachelor of Science in Civil Engineering Degree. Necessary documents in support of their application must also be provided.

24. Time Limits for Completion of Bachelor's Degree

A student must complete his studies within a maximum period of six years for Civil Engineering. In some cases, the Bachelor's Degree completion may be extended beyond six years with proper permission of the University Authority.

24.1. Inclusion of Repeaters

Repeater students from the old syllabus system will need to take the equivalent courses from the new syllabus system. The irregular/repeater students will be subjected to the following rules and regulations:

1. If the original course in the old syllabus has only one equivalent course in the new syllabus

The following rules apply for such courses:

- a. If he/she had received an 'F' in the original course or had not registered for the original course before, he/she has to complete the equivalent course as per the new syllabus and the earned credit will be equal to the credit of the equivalent course.
- b. If the student had received an 'F' in the original course in the old syllabus, he/she has to register for the original course (of old

syllabus) and then he/she can get 'A+' in the equivalent course of the new syllabus.

- c. If the student got low grade in the original course and wants to retake the course for improvement, he/she has to register for the equivalent course as per the new syllabus (provided he/she fulfills the other conditions of registration).
- 2. If two or more of the original courses in the old syllabus have only one equivalent course in the new syllabus:

The following rules apply for such courses:

- a. If the student had received an '**F**' or had not registered for **one/both** of the original courses before, he/she has to complete the equivalent course as per the new syllabus.
- b. The student will be considered to have completed the original courses if he/she has received passing grade in the equivalent course.
- c. If the student had registered in **all** of the original courses and have received an 'F' in **one/more** of those, he/she can get 'A+' in the equivalent course.
- d. If the student had not registered for **at least one** of the original courses in the old syllabus before, he/she can get 'A+' in the equivalent course.
- e. If the student had obtained passing grade in **all** of the original courses below and had received lower grade(s) in one/more courses he may be allowed to retake the equivalent course for improvement (provided he/she fulfills the other conditions of registration).
- 3. If the original course in the old syllabus has two/more equivalent courses in the new syllabus:

The following rules apply for such courses:

a. If the student had received an 'F' or had not registered for the original course before, he/she has to complete **all** the equivalent courses as per the new syllabus.

- b. If the student had registered for the original course before and have received an 'F' in the course, he/she can get 'A+' in **all** of the equivalent courses.
- c. If the student had not registered for the original course before, he/she can get 'A+' in any of the equivalent courses.
- d. If the student had received lower grade in the original course he/she may be allowed to retake any of the equivalent courses for improvement (provided he/she fulfills the other conditions of registration).

25. Attendance, Conduct, Discipline etc.

25.1 Attendance

All students are expected to attend classes regularly. The university believes that attendance is necessary for effective learning. The first responsibility of a student is to attend classes regularly, and one is required to attend at least 60% of all classes held in every course.

25.2 Conduct and Discipline

A student shall conform to a high standard of discipline, and shall conduct himself, within and outside the precincts of the university in a manner befitting the students of a university of national importance. He shall show due courtesy and consideration to the employees of the university, good neighborliness to his fellow students and the teachers of the university and pay due attention and courtesy to visitors.

To safeguard its ideals of scholarship, character and personal behavior, the university reserves the right to require the withdrawal of any student at any time for any reason deemed sufficient.

26. Absence during Semester

A student should not be absent from quizzes, class tests, etc. during the semester. Such absence will naturally lead to reduction in points/marks which count towards the final grade. Absence in Semester Final Examination will result in 'F' grades.

A student who has been absent for short periods, up to a maximum of four weeks due to illness should approach, the course teacher(s) or the course coordinator(s) for make-up quizzes/class tests or assignments immediately on returning to the classes. Such request should be supported by medical certificate from a Medical Officer at the University of other Hospital(s).

Chapter 4

Course Requirements for Undergraduate Studies

4.1 INTRODUCTION

The undergraduate students of the Department of Civil Engineering have to follow the course schedule given below. The letter prefix in any course number indicates the Department offering the course viz. CE for Civil Engineering, EEE for Electrical Engineering, CSE for Computer Science and Engineering, CHE for Chemistry, PHY for Physics, MAT for Mathematics, and GED for General Education. The first digit in the number indicates the year/level for which the course is intended. Odd number courses are theory courses and even numbered courses are sessional courses.

	General Education (9.5 Credits)				
1.	GED 101	The Four Skills of Communication in English I	2.0		
2.	GED 102	GED 102 Developing English Language skills lab			
3.	GED 153	Accounting	2.0		
	Bangla (Courses: (Any one)	(2.0X1)=2		
4.	GED119	History of the Emergence of Independent Bangladesh (option)	2.0		
5.	5. GED117 Bengali Language and Literature (option)		2.0		
6.	GED105	Bangladesh Studies (option)	2.0		
	(2.0X1)=2				
7.	GED 155	Sociology (option)	2.0		
8.	GED 157	Economics (option)	2.0		
9.	GED 159	Government (option)	2.0		
	Total				

4.2 COURSE REQUIREMENTS

	Basic So	cience (12 Credits)	Credit
1.	PHY 175	Physical Optics, Waves and Oscillation, Heat and Thermodynamics	3.0
2.	PHY 177	Structure of Matter, Electricity and Magnetism and Modern Physics	3.0
3.	PHY 176	Engineering Physics Lab	1.5
4.	CHE 175	Engineering Chemistry	3.0
5.	CHE 176	Engineering Chemistry Lab	1.5
		Total	12
	Mathen	natics (12 Credits)	Credit
1.	MAT 153	Differential and Integral Calculus, Matrices	3.0
2.	MAT 155	Differential Equations and Statistics	3.0
3.	MAT 257	Coordinate Geometry and Vector Analysis	3.0
4.	MAT 259	Fourier Analysis and Laplace Transformation	3.0
Total			12.0
	Basic Engi	neering (44 Credits)	Credit
1.	CE 101	Engineering Mechanics	3.0
2.	CE 103	Surveying	3.0
3.	CE 201	Engineering Materials	3.0
4.	CE 203	Engineering Geology and Geomorphology	3.0
5.	CE251	Mechanics of Solids I	3.0
6.	CE253	Mechanics of Solids II	3.0
7.	CE 241	Fluid Mechanics	3.0
8.	EEE 241	Fundamentals of Electrical Engineering	3.0
9.	CE 209	Numerical Methods and Analysis	2.0

10.	CE106	Practical Surveying	1.5
10.	CSE 252	Computer Programming Lab	1.5
11.	CE 102	Civil Engineering Drawing	1.5
12.	CE 102	Computer Aided Drafting	1.5
13.	CE 101	Workshop Sessional	1.5
15.	CE 202	Details of Construction Lab	1.5
16.	CE 204	Engineering Materials Lab	1.5
17.	CE 206	Quantity Surveying	1.5
18.	CE 208	Structural Mechanics Lab	1.5
19.	CE 242	Fluid Mechanics Lab	1.5
20.	CE 304	Engineering Computation Lab	1.5
21.	CE 302	Remote Sensing and GIS Lab	1.5
		Total	44
	Structural Eng	gineering (22.5 Credits)	Credit
1.	CE 351	Structural Analysis and Design I	3.0
2.	CE 353	Structural Analysis and Design II	3.0
3.	CE 451	Structural Analysis and Design III	3.0
4.	CE 355	Design of Concrete Structures I	3.0
5.	CE 357	Design of Concrete Structures II	3.0
6.	CE 359	Design of Steel Structures	3.0
7.	CE 360	Steel Structures Design Lab	1.5
8.	CE356	Concrete Structures Design Lab I	1.5
9.	CE 452	Concrete Structures Design Lab II	1.5
		Total	22.5
l	Environmental 1	Engineering (8.5 Credits)	Credit
1.	CE 311	Water Supply Engineering	3.0
2.	CE 313	Waste water and Sanitation Engineering	4.0
3.	CE 314	Environmental Engineering Lab-I	1.5
		Total	8.5
	Geotechnical Engineering (8.5 Credits)		
1.	CE 321	Principles of Soil Mechanics	4.0
2.	CE 323	Foundation Engineering	3.0
3.	CE 324	Geotechnical Engineering Lab-I	1.5
		Total	8.5

]	Transportation	Engineering (8.5 Credits)	Credit
1.	CE 331	Transportation Planning and Traffic Engineering	3.0
2.	CE 333	Pavement Design and Railway Engineering	4.0
3.	CE 334	Transportation Engineering Lab-I	1.5
		Total	8.5
W	ater Resources	Engineering (8.5 Credits)	Credit
1.	CE 341	Open Channel Flow	4.0
2.	CE 345	Hydrology, Irrigation Engineering and Flood Management	3.0
3.	CE 342	Open Channel Flow Lab	1.5
		Total	8.5
<u>(</u>	Civil Engineerir	ng Practices (10.5 Credits)	Credit
1.	CE 491	Project Planning and Construction Management	3.0
2.	CE 493	Professional Practices, Communication and Ethics	3.0
3.	CE 494	Professional Practices and Communication Sessional	1.5
Optional Courses: Any One			3.0X1=3.0
4.	CE495	Socio-Economic Aspects of Development Projects	3.0
5.	CE498	Business and Career Development	3.0
		Total	10.5
		Minor (11 Credits)	
		ıral Engineering	
Opt	Credit		
1.	CE 453	Introduction to Finite Element Method	2.0
2.	CE 455	Prestressed Concrete	2.0
3.	CE 457	Design of Concrete Structures III	2.0
4.	CE 459	Dynamics of Structures	2.0

5.	CE 461	Introduction to Steel-Concrete Composite Structure	2.0
6.	CE 454	Computer Aided Analysis and Design Sessional	1.5
		Total	5.5
	Environn	nental Engineering	
<u>Opt</u>		(Any two theory + one Lab)= (2x2+1.5)	Credit
1.	CE 411	Solid and Hazardous Waste Management	2.0
2.	CE 413	Environmental Pollution Management	2.0
3.	CE 415	Environmental and Sustainable Management	2.0
4.	CE 414	Environmental Engineering Lab- II	1.5
	5.5		
	Geotech	nical Engineering	
<u>Opt</u>	Credit		
1.	CE 421	Earth Retaining Structures	2.0
2.	CE 425	Soil Water Interaction	2.0
3.	CE423	Elementary Soil Dynamics	2.0
4.	CE 427	Geotechnical Earthquake Engineering	2.0
5.	CE 424	Geotechnical Engineering Lab-II	1.5
		Total	5.5
	Transpor	tation Engineering	
Optiona	Courses:(Any	two theory + one Lab)= (2x2+1.5)	Credit
1.	CE 431	Traffic Planning and Management	2.0
2.	CE 433	Pavement Management, Drainage and Airport	2.0
3.	CE 435	Urban Transportation Planning and Management	2.0
4.	CE 434	Transportation Engineering Lab- II	1.5
		Total	5.5

	Water Re	sources Engineering		
<u>Opt</u>	ional Courses :	(Any two theory + one La (2x2+1.5)	nb)=	Credit
1.	CE 443	Ground Water Engine	eering	2.0
2.	CE 445	River Engineerin	River Engineering	
3.	CE 447	Hydraulic Structur	Hydraulic Structures	
4.	4. CE 449 Coastal Engineering		2.0	
5.	CE 448	Water Resources Engineering Lab		1.5
		Total		5.5
	CE 490 (Project/ Thesis) 4.5 (
	Total) Credits

4.3 SUMMARY OF COURSE REQUIREMENTS FOR Bachelor of Science in CIVIL Engineering DEGREE:

	Courses	Required Credits	Total credits to be offered)	
Α	General Education	9.5	(17.5)	
B	Basic Science	12.0	(12.0)	
С	Mathematics	12.0	(12.0)	
D	Basic Engineering	44.0	(44.0)	
Е	Structural Engineering	22.5	(34.0)	
F	Environmental Engineering	8.5	(16.0)	
G	Geotechnical Engineering	8.5	(18.0)	
Н	Transportation Engineering	8.5	(16.0)	
Ι	Water Resources Engineering	8.5	(18.0)	
J	Civil Engineering Practices	10.5	(13.5)	
K	Optional Courses			
	Theory		8.0	
	Sessional/Lab 3.0		3.0	
L Project/Thesis 4.5		4.5		
Gra	and Total	160.0		

4.4 COURSES OFFERED IN DIFFERENT SEMESTERS FOR Bachelor of Science in CIVIL Engineering DEGREE:

1 ^{sh} Semester	(o courses)		
CE 101	Engineering Mechanics	3.0	
CHE 175	Engineering Chemistry	3.0	
MAT 153	Differential and Integral Calculus, Matrices	3.0	
PHY 175	Physical Optics, Waves and Oscillation, Heat and Thermodynamics	3.0	
GED119	History of the Emergence of Independent Bangladesh	2.0	
GED117	Functional Bangla	2.0	Select One
GED105	Bangladesh Studies	2.0	
CE 102	Civil Engineering Drawing	1.5	
CHE 176	Engineering Chemistry Lab	1.5	
PHY 176	Engineering Physics Lab	1.5	
Total		18.5	

1st Semester (8 courses)

2nd Semester (9 courses)

	() courses)	
CE 103	Surveying	3.0
EEE 241	Fundamentals of Electrical	3.0
	Engineering	
GED 101	The Four Skills of Communication	2.0
	in English I	
GED 102	Developing English Language	1.5
	skills lab	
MAT 155	Differential Equations and	3.0
	Statistics	
PHY 177	Structure of Matter, Electricity and	3.0
	Magnetism and Modern Physics	
CE 104	Computer Aided Drafting	1.5
CE106	Practical Surveying	1.5
CE 108	Workshop Sessional	1.5
Total		20.0

5 Demester	() courses)		
CE 201	Engineering Materials	3.0	
CE 203	Engineering Geology and	3.0	
	Geomorphology		
CE 251	Mechanics of Solids I	3.0	
GED 153	Accounting	2.0	
MAT 257	Coordinate Geometry and Vector	3.0	
	Analysis		
CE 202	Details of Construction Lab	1.5	
CE 204	Engineering Materials Lab	1.5	
CSE 252	Computer Programming Lab	1.5	
GED 159	Government (option)	2.0	
GED 155	Sociology (option)	2.0	Select One
GED 157	Economics (option)	2.0	
Total		20.5	

3rd Semester (9 courses)

4th Semester (9 courses)

- Semester	() courses)	
CE 209	Numerical Methods and Analysis	2.0
CE253	Mechanics of Solids II	3.0
MAT 259	Fourier Analysis and Laplace Transformation	3.0
CE 241	Fluid Mechanics	3.0
CE 311	Water Supply Engineering	3.0
CE 304	Engineering Computation Lab	1.5
CE 206	Quantity Surveying	1.5
CE 208	Structural Mechanics Lab	1.5
CE 242	Fluid Mechanics Sessional	1.5
Total		20.0

5th Semester (8 courses)

CE 493	Professional	Practices,	3.0	
	Communication an	d Ethics		

CE 351	Structural Analysis and Design I	3.0
CE 355	Design of Concrete Structures I	3.0
CE 313	Waste water and Sanitation Engineering	4.0
CE 321	Principles of Soil Mechanics	4.0
CE 494	Professional Practice and Communication Sessional	1.5
CE 314	Environmental Engineering Lab-I	1.5
CE 324	Geotechnical Engineering Lab-I	1.5
Total		21.5

6th Semester (8 courses)

CE 357	Design of Concrete Structures II	3.0
CE 323	Foundation Engineering	3.0
CE 353	Structural Analysis and Design II	3.0
CE 331	Transportation Planning and	3.0
	Traffic Engineering	
CE 341	Open Channel Flow	3.0
CE356	Concrete Structures Design Lab I	1.5
CE 302	Remote Sensing and GIS Lab	1.5
CE 342	Open Channel Flow Lab	1.5
Total		19.5

7th Semester (8 courses)

	(o courses)	
CE 491	Project Planning and	3.0
	Construction Management	
CE 359	Design of Steel Structures	3.0
CE 451	Structural Analysis and Design	3.0
	III	
CE 333	Pavement Design and Railway	4.0
	Engineering	
CE 345	Hydrology, Irrigation	4.0
	Engineering and Flood	
	Management	
CE 334	Transportation Engineering Lab-I	1.5

CE 360	Steel Structures Design Lab	1.5	
CE 490	Project/Thesis	1.5	
Total		21.5	

8th Semester (9 courses)

	(9 courses)	1	
CE 490	Project/Thesis	3.0	
CE 452	Concrete Structures Design Lab II	1.5	
CE495	Socio-Economic Aspects of Development Projects	3.0	Select One
CE498	Business and Career Development	3.0	
CE 453	Introduction to Finite Element Method	2.0	
CE 455	Prestressed Concrete	2.0	
CE 457	Design of Concrete Structures III	2.0	Select Two
CE 459	Dynamics of Structures	2.0	- (Structure)
CE 461	Introduction to Steel-Concrete Composite Structure	2.0	
CE 454	Computer Aided Analysis and Design Sessional	1.5	Structure
CE 411	Solid and Hazardous Waste Management	2.0	Select Two (Environme nt)
CE 413	Environmental Pollution Management	2.0	
CE 415	Environmental and Sustainable Management	2.0	
CE 414	Environmental Engineering Lab- II	1.5	Environmen t
CE 421	Earth Retaining Structures	2.0	
CE 425	Soil Water Interaction	2.0	Select Two
CE423	Elementary Soil Dynamics	2.0	(Geotechnic al)
CE 427	Geotechnical Earthquake Engineering	2.0	
CE 424	Geotechnical Engineering Lab-II	1.5	Geotechnica 1

CE 431	Traffic Planning and Management	2.0	Calast Taur
CE 433	Pavement Management, Drainage and Airport	2.0	Select Two (Transportat ion)
CE 435	Urban Transportation Planning and Management	2.0	
CE 434	Transportation Engineering Lab- II	1.5	Transportati on
CE 443	Ground Water Engineering	2.0	
CE 445	River Engineering	2.0	Select Two (Water Resource)
CE 447	Hydraulic Structures	2.0	
CE 449	Coastal Engineering	2.0	
CE 448	Water Resources Engineering Lab	1.5	Water Resource
Total		18.5	
Grand Tot	tal	160.0	

A. General Education

1. GED 101: The Four Skills of Communication in English I (2.0 credit hours)

Introduction: current approaches to learning English, communication today.

Phonetics: phonetics and correct English pronunciation.

Syntax: vocabulary, diction and English sentence; sentence variety and style; grammatical problems.

Reading skill: readability, reading strategies, generating ideas through purposive reading, reading of selected stories, comprehension.

Writing skill: principles of effective writing; generating ideas, planning, organization and development of writing; composition, précis.

Written communication: business communication, tenders and quotations, journal articles, report.

Oral communication: dialogue, technical and scientific presentation.

Recommended Books:

New Headway Intermediate Student & Work Book, by Liz and John Soars. Examples from Target English.

Recommended Books:

Classics (abridged) such as Oliver Twist/ Black Beauty, etc.

2. GED 102: Developing English Language Skills Lab (1.5 credit hours)

Reading skill: skimming, scanning, predicting, inferring; analysis and interpretation of texts; comprehension from literary and non-literary texts.

Writing skill: product approach, process approach: brain storming, self-evaluation, peer evaluation, revision/rewriting, teacher's evaluation; techniques of writing: comparison and contrast, problem and solution, cause and effect, classification, illustration; writing paragraph, essay and report.

Listening skill: listening to recorded texts; learning to take useful notes and answering questions.

Speaking skill: dialogue in peer work; participation in discussion and debate; extempore speech; narrating events; story telling; presentation.

Recommended Books:

As advised by the course teacher.

3. GED 153: Accounting (2.0 credit hours)

Financial accounting: objectives and importance of accounting; accounting as an information system; basic accounting principles; accounting equation; recording system; accounting cycle; journal, ledger, trial balance; preparation of financial statements considering adjusting entries; financial statement analysis and interpretation.

Cost accounting: cost concepts and classification; cost-volume-profit analysis; contribution margin approach and its application, break-even analysis, target profit analysis, operating leverage; absorption costing vs variable costing; job order costing; capital budgeting; long run planning and control.

Recommended Books:

As advised by the course teacher.

4. GED 155: Sociology (2.00 credit hours)

Nature, scope and perspectives of sociology; stages of social research and research methods; culture and civilization; socialization and personality development; globalization; media and individual; social organization and social problem; social stratification; industrial revolution, capitalism and socialism; work and economic life; environment and human activities; climate change and global risk; population and human society; urbanization and city development; social change and technology.

Recommended Books:

As advised by the course teacher.

5. GED 157: Economics (2.00 credit hours)

Economics and engineering; microeconomics and macroeconomics; theory of demand and supply and their elasticity; demand estimation; price determination; indifference curve technique; theory of production; theory of cost and cost estimation; market structure; national income accounting, depreciation; circular flow of income and expenditure; cost-benefit analysis; payback period, NPV, IRR, inflation; economic feasibility of engineering undertakings.

Recommended Books:

As advised by the course teacher.

6. GED 159: Government (2.00 credit hours)

Basic concepts of government and politics: forms of government; organs of government- legislature, executive, judiciary; functions of government; democracy; socialism; welfare state; bureaucracy; good

Governance; e-government. Government and politics of Bangladesh: Major administrative reforms; major amendments to the constitutionnon-party caretaker government; local government; public policies; non-government organizations (NGOs); managing development project- planning, implementation, monitoring and evaluation; constitutional bodies election commission, comptroller and auditor general, public service Commission; foreign policy of Bangladesh.

Regional and international organizations: SAARC, ASIAN, UNO.

Recommended Books:

As advised by the course teacher.

7. GED 117: Functional Bangla (2.00 credit hours)

বাংলা ভাষার প্রয়োগ ও অপ-প্রয়োগ, বাংলা বানান ও ভাষা সম্পাদনা, বিরাম চিহ্নের প্রয়োগ, পত্র লিখন, জীবন-বৃত্তান্ত তৈরি করার কাঠামো, কারণ-দর্শানো নোটিশ, অভিযোগ-নামা এবং তার জবাব, সভার কার্য-বিবরণী (রেজুলেশন), নিয়োগ বিজ্ঞপ্তি, চাকুরির সাক্ষাৎকার-বিষয়কপত্র, নিয়োগপত্র ও যোগদানপত্র , চারিত্রিক সনদপত্র, অফিস আদেশ/ নোটিশ বা বিজ্ঞপ্তি/ প্রেস বিজ্ঞপ্তি, স্যুভিনির বা ম্যাগাজিনের জন্য বাণী এবং সম্পাদকীয় রচনা, ব্যবহারিক বাংলা রচনা: একুশে ফেব্রুয়ারী, মুক্তিযুদ্ধ, বাংলা ভাষা, বিশ্বায়ন, আকাশসংস্কৃতি।

Recommended Books:

১ । ড. ফজলুল হক সৈকত, ব্যবহারিক বাংলা, ইত্যাদি গ্রন্থ প্রকাশ, প্রথম প্রকাশ ২০১৬
২ । উপেন্দ্রনাথ ভট্টাচার্য, রবীন্দ্র-কাব্য পরিক্রমা, বাণীশিল্প, কলকাতা, দ্বিতীয় সংক্ষরণ ১৯৮৮
৩ । আতাউর রহমান, নজরুলকাব্য সমীক্ষা, কল্লোল বুক সেন্টার, নীলক্ষেত, ঢাকা, তৃতীয় সংক্ষরণ ১৯৯৮
৪ । আবদুল মান্নান সৈয়দ, জীবনানন্দ দাশ, অবসর, বাংলাবাজার, ঢাকা, প্রথম প্রকাশ, ১৯৯৬
৫ । হুমায়ুন আজাদ, শামসুর রাহমান: নিঃসঙ্গ শেরপা, আগামী প্রকাশনী, বাংলাবাজার, ঢাকা, প্রথম প্রকাশ, ১৯৯৬
৬ । বীতশোক ভট্টাচার্য, কবিতার ভাষা কবিতায় ভাষা, বাণীশিল্প, কলকাতা, প্রথম প্রকাশ ২০০৪
৭ ৷ অজিত কুমার ঘোষ, নাটকের কথা, সাহিত্যলোক, কলকাতা, পঞ্চম সংক্ষরণ জুন ২০০৩
৮ ৷ ড. ফজলুল হক সৈকত, সাহিত্যে রসদর দরোজা, ভাষাপ্রকাশ, প্রথম প্রকাশ , ২০১৬

৯। আজহার ইসলাম, বাংলাদেশের ছোটগল্প, বিষয়-ভাবনা, স্বরূপ ও শিল্পরূপ, বাংলাএকাডেমী, ঢাকা, ১৯৯৯

১০। শ্রীকুমার বন্দ্যোপাধ্যায়, বাংলা উপন্যাসের ধারা, বাংলাদেশ সংস্করণ, *বিভাস*, বাংলাবাজার, ঢাকা, ২০১৬

8. GED 119: History of the Emergence of Independent Bangladesh(2.00 credit hours)

Political Geography: Principalities (Janapads)

Attempts in History for Building Undivided state of Bengal and the Partition of Indian Sub-continent-(a) Shashanka (b) The Palas and the Senas (c) The Muslim Sultanate-IkhtiyarUddin Muhammad BakhtiyarKhalji, (d) The Mughals and Bengal-Revolt of the BharoBhuyeans (e) Bengal and the British- The Battle of the Plassey, and (g) The First War of Independence –the so-called Sepoy Mutiny.

- 1. The Partition of Bengal in 1905 and its Annulment in 1911
- 2. The India Act of 1935 and the Lahore Resolution of 1940-Bengal Pact and Deshbandu Chittaranjan Das
- 3. Creation of Pakistan and status of Bengal within Pakistan
- 4. The Language Movement and the Politics of United Front (Jukto-Front)
- 5. Growing Disparity between East and West Pakistan and Struggle for Autonomy under Military Rule in Pakistan
- 6. Bangabandhu Sheikh Mujibur Rahman and His Historic Six Point Charter, 1966
- 7. The Agartata Conspiracy and the Mass Upsurge of 1969
- 8. Abdication of Ayub Khan, Martial Law of 1969 and the 1970 Election
- 9. The Liberation of 1971-Non-cooperation Movement and the historic 7th March Speech of Bangabandhu, Declaration of Independence on 26th March by Bangabandhu and his arrest, Formation of Mujibnagar Government in April, 1971, Role of Mukti Bahini, the Allied Power and the Great Powers and Surrender of the Pakistani Army on 16th December (Victory Day).
- 10. Great Men and History- Role of Bangabandhu and the Emergence of Bangladesh

Recommended Books:

- 1. Sirajul Islam (ed.) *Banglapedia: National Encyclopedia of Bangladesh*, (Dhaka: Asiatic Society of Bangladesh, 2003).
- 2. Sirajul Islam, (ed), *History of Bangladesh*, *1704-1971*, Vol. I, II and III, (Dhaka: Asiatic Society of Bangladesh, 1992).
- 3. Willem van Schendel, *A History of Bangladesh* (Cambridge University Press, 2009).
- 4. Srinath Raghavan, 1971: A Global History of the Creation of Bangladesh (New Delhi: Permanent Black, 2013).
- 5. A. M Chowdhury and FakrulAlam (eds.), *Bangladesh on the Threshold of the Twenty First Century* (Dhaka: Asiatic Society of Bangladesh, 2002).
- 6. Salahuddin Ahmed and Bazlul Mobin Chowdhury, *Bangladesh National Culture and Heritage: an introductory Reader*, (Dhaka: Independent University, Bangladesh, 2004).
- 7. Sheikh Mujibur Rahman, *The Unfinished Memoirs*, (Dhaka: The University Press Limited, 2012).
- মুনতাসীর মামুন, ৬. মো: মাহবুবর রহমান, স্বাধীন বাংলাদেশের অভ্যদয়ের ইতিহাস, ঢাকা, সুবর্ণ প্রকাশনী, ২০১২।
- 9. ৬. মোঃ মাহবুবুর রহমান, বাংলাদেশের ইতিহাস ১৯৪৭-৭১, ঢাকা, সময় প্রকাশন, ১৯৯৯।
- 10. ড. আবদুর রহিম, ড. আবদুল মমিন চৌধুরী, ড. এ. বি. এম. মাহমুদ, ড. সিরাজুল ইসলাম, বাংলাদেশের ইতিহাস, ঢাকা, নওরোজ কিতাকিস্তান, ১৯৭৭।

9. GED 105: Bangladesh Studies: (2.00 credit hours)

Geographical-Bangladesh-Geography- Topography and climate and Anthropology-origin and traits of Bengalie people and those of various indigenous groups, Historical-(A) Prehistory and History of the Shashanka, the Pala and the Sena up to 1203, Muslim conquest in Bengal: Sultanate and Mughal period in Bengal (1204-1757), British Conquest of India (1757-1947),Pakistani Interregnum-The Liberation War of Bangladesh(1947-1971),

Political- The Constitution of Bangladesh- The functions of the Executive, Legislative and the Judiciary, Local Government Functions, etc.,

Economic- (A) Economic growth in Bangladesh and comparisons with other countries (B) Trends in human development indicators (C)

Trends in urbanization, migration and landlessness (D) Trends in birth rate, death rate and Population growth

Agricultural-the importance of Agriculture to Bangladesh: (A) Factors affecting agricultural production (B) Subsistence/food crops (C) Cash/Commercial crops (D) The impact of new technologies in agriculture-The Green Revolution.

Industrial-(A) The importance of industrialization to the development of Bangladesh (B) Types of industries

Societal-The service Sectors: (A) The informal service sector (B) Nongovernmental organizations (NGOs) as service delivery organizations (C) The importance of financial sectors

Populational- Structure and Growth of Bangladesh

Educational- primary, secondary and tertiary

Religious-Muslim Society and the Hindu, Christian and Buddhist communities.

Environmental-Environmental Challenges-Global Environmental Crisis and Bangladesh

Cultural-Culture of Bangladesh: (A) Its basic characteristics, urban rural cultural differences, sub-cultural issues, cultural conflict (B) Folk Culture of Bangladesh and its special features(C) indigenous and marginalized communities in Bangladesh.

Recommended Books:

- 1. Sirajul Islam (ed.) *Banglapedia: National Encyclopedia of Bangladesh*, Dhaka: Asiatic Society of Bangladesh, 2003.
- 2. Sirajul Islam, (ed), *History of Bangladesh*, *1704-1971*, Vol. I, II and III, Dhaka: Asiatic Society of Bangladesh, 1992.
- 3. Salahuddin Ahmed and Bazlul Mobin Chowdhury, *Bangladesh National Culture and Heritage: an introductory Reader*, Dhaka: Independent University, Bangladesh, 2004).
- রশিদ, হার⁶ন-অর। বাংলাদেশ: রাজনীতি সরকার ও শাসনতান্ত্রিক উন্নয়ন ১৯৫৭-২০০০। ঢাকা: নিউ এজ পাবলিকেশঙ্গ; ২০০১.
- 5. Guhathakurta, Meghna and Willem Van Schendel, *The Bangladesh Reader*: History, culture and Politics: Durham and London, Duke University Press, 2013

B. Basic Sciences

10. PHY 175: Physical Optics, Waves and Oscillation, Heat and Thermodynamics (3.0 credit hours)

Physical optics: theories of light; Young's double slit experiment, displacement of fringes and its uses, Fresnel bi-prism, interference at wedge shaped films, Newton's rings, interferometers; diffraction of light; Fresnel and Fraunhoffer diffraction, diffraction by single slit, diffraction from a circular aperture, resolving power of optical instruments, diffraction at double slit and n-slits-diffraction grating; polarization; production and analysis of polarized light, Brewster's law, Malus law, polarization by double refraction, retardation plates, nicol prism, optical activity, polarimeters, polaroid.

Waves and oscillations: differential equation of a simple harmonic oscillator, total energy and average energy, combination of simple harmonic oscillations, Lissajous figures, spring-mass system, calculation of time period of torsional pendulum, damped oscillation, determination of damping co-efficient; forced oscillation, resonance, two-body oscillations, reduced mass, differential equation of a progressive wave, power and intensity of wave motion, stationary wave, group velocity and phase velocity, architectural acoustics, reverberation and Sabine's formula.

Heat and thermodynamics: principle of temperature measurements: platinum resistance thermometer, thermo-electric thermometer, pyrometer; kinetic theory of gases: Maxwell's distribution of molecular speeds, mean free path, equipartition of energy, Brownian motion, Vander Waal's equation of state, review of the first law of thermodynamics and its application, reversible and irreversible processes, second law of thermodynamics, Carnot cycle; efficiency of heat engines, Carnots theorem, entropy and disorder, thermodynamic functions, Maxwell relations, Clausius-Clapeyron equation, Gibbs phase rule, third law of thermodynamics.

Recommended Books:

Zemansky, M. W. & Dutmann, R. H. (2007) *Heat and Thermodynamics*. Pearson Education India.

Halliday, D. & Resnic, R. (2010). Physics, Volume-I. John Wiley & Sons.

Hossain, T. (1988) A Text Book on Heat. Springer-Verlag.

Subramanyan, N. &Brizlal.(2000). A Text book of Sound, Heat and Optics. Springer.

Subramanyan, N. &Brizlal.(1964). *Properties of Matter*. Addison-Wesley Publishing Company.

Kumar, G. (2008). *Quantum Mechanics*. Firewall Media.

Ahmad, D.G.(1995). *Physics for Engineering, Volume-I*.Bangladesh Academy of Sciences.

Richard, E. S., Claus, B. & Gordon, W. V. Van (6th ed., 1998), *Fundamentals of Classical Thermodynamics*, John Wiley & Sons.

Michael, J. M. and Howard N. S. (Latest edition), *Fundamentals of Engineering Thermodynamics*, John Wiley & Sons.

Gupta & Saxena P.N., Fundamental of Solid State Physics.

11. PHY 177: Structure of Matter, Electricity and Magnetism and Modern Physics (3.0 credit hours)

Structure of matter : crystalline and non-crystalline solids, single crystal and polycrystalline solids, unit cell, crystal systems, coordination number, crystal planes and directions, NaCl and CsCl structure, packing factor, Miller indices, relation between inter planar spacing and Miller indices, Bragg's law, methods of determination of inter planar spacing from diffraction patterns; defects in solids: point defects, line defects, bonds in solids, interatomic distances, calculation of cohesive and bonding energy; introduction to band theory: distinction between metal, semiconductor and insulator.

Electricity and Magnetism: Electric charge and Coulomb's law, Electric field, concept of electric flux and the Gauss's law- some applications of Gauss's law, Gauss's law in vector form, Electric potential, relation between electric field and electric potential, capacitance and dielectrics, gradient, Laplace's and Poisson's equations, Current, Current density, resistivity, the magnetic field, Ampere's law, Biot-Savart law and their applications, Laws of electromagnetic induction-Maxwell's equation. Modern Physics: Galilean relativity and Einstein's special theory of relativity; Lorentz transformation equations, Length contraction, Time dilation and mass-energy relation, photoelectric effect, Compton effect; De Broglie matter waves and its success in explaining Bohr's theory, Pauli's exclusion principle, Constituent of atomic nucleus, Nuclear binding energy, different types of radioactivity, radioactive decay law; Nuclear reactions, nuclear fission, nuclear fusion, atomic power plant.

Mechanics: Linear momentum of a particle, linear momentum of a system of particles, conservation of linear momentum, some applications of the momentum principle; Angular momentum of a particle, angular momentum of a system of particles, Kepler's law of planetary motion, the law of universal Gravitation, the motion of planets and satellites, introductory quantum mechanics; Wave function; Uncertainty principle, postulates, Schrödinger time independent equation, expectation value, Probability, Particle in a zero potential, calculation of energy.

Recommended Books:

Edward M. P. (Vol. II), *Electricity and Magnetism*.

Kenneth S. K, Modern Physics.

John, R. T, Classical Mechanics.

Halliday, D. & Resnick, R. (2010). *Physics, Volume-II*. John Wiley & Sons.

Gupta, S.L. , Kumar, V. & Singh, S.P. (1992). *Electrodynamics*. Pragati Prakashan.

Timoshenko, S. P. &Goodier, J. N. (2013).*Theory of Elasticity*. McGraw Hill, Cambridge University Press.

Haque, Roy & Rofiqullah.(2001). Concepts of Electricity and Magnetism. Cengage Learning.

Baiser.(1981).Concept of Modern Physic. McGraw-Hill International Book.

Subrahmanyam, N. & Brizlal.(2008). *Atomic and Nuclear Physics*, S. Chand Limited.

Theraja, B. L.(1988). Modern Physics. R.R. Bowker.

Saxena, R.S., Gupta, R.C. & Saxena, P.N.(1995). *Solid State Devices*, Inter University Board of India

12. PHY 176: Engineering Physics Lab (1.5 credit hours)

Experiments based on theory learned in Engineering Physics I and Engineering Physics II:

Determination of line frequency by Lissajous figures using an oscilloscope and a function generator and verification of the calibration of time/div knob at a particular position for different frequencies;

Determination of frequency of a tuning fork by Melde's apparatus; Determination of the spring constant and the effective mass of a loaded spring; to draw magnetic induction versus current curve for a circular Coil using Biot-Savart law and hence to verify tangent law; Determination of the moment of inertia of a fly wheel about its axis of rotation; Determination of rigidity modulus of the material of a wire by static method; Determination of the pressure-coefficient of air by constant volume air thermometer; Determination of the thermal conductivity of a bad conductor by lee's method; to plot the thermoelectromotive force vs temperature (calibration) curve for a given thermocouple (e5); Determination of the melting point of a solid using the calibration curve obtained in experiment-e5; Determination of the mechanical equivalent of heat by electrical method; Determination of the focal length of (i) a convex lens by displacement method and (ii)a concave lens by an auxiliary lens method; determination of the radius of curvature of a plano-convex lens by Newton's ring method; Determination of specific rotation of sugar solution by a polarimeter; to verify Malus' law of polarization; Determination of the threshold frequency for the material of a photocathode and hence find the value of the Planck's constant; Determination of lattice constant by x-ray.

13. CHE 175: Engineering Chemistry (3.0 credit hours)

Atomic structure and quantum theory: Bohr's theory, Heisenberg's uncertainty principle, Schrödinger's wave equation, electronic configurations and properties of atoms; electronic configurations and properties of molecules: chemical bond, valence bond theory molecular orbital theory, shape of molecules, bond length, bond energy; chemistry of halogen, alkali metals, alkaline earth metals, nonmetals and heavy metals; modern concepts of acids and bases; different types of solutions; properties of dilute solution; thermo chemistry; electrochemistry: voltaic cells, electrolytic cells; colloids and colloidal solution; chemical and ionic equilibria; chemistry of water; chemistry of water pollution; chemistry of cements, silicates and limes.

Reaction kinetics: rate of chemical reactions; order and molecularity of reactions, different types of rate expressions, methods of determining rate and order, effect of temperature on reaction rate and energy of activation.

Chemical corrosion: introduction to chemical corrosion, corrosion of metals and alloys in dry and wet environments, mechanism of corrosion, atmospheric and soil corrosion and their preventive measures.

Chemistry of environmental pollution: environment and its characteristics, chemistry of metal and non-metal pollutants, analytical techniques used in determination of pollutants, concepts of DO, BOD, COD and threshold odor number, chemistry involved in water treatment plants, quality of industrial waste water.

Polymers: chemistry of polymerization, different types of polymers and their properties, polymer degradation, elastomers and composite materials.

Paints and varnishes: introduction to paints and varnishes, pretreatment of the surface, metallic and non-metallic and organic protective coating and their uses.

Recommended books:

Ebbing, D.D.,(1998). General Chemistry. A.I.T.B.S.

Haider, S.Z.,(1977). Introduction To Modern Inorganic Chemistry. Students' Publications.

Haider, S.Z.,(1975). *Advanced Inorganic Chemistry*. Students' Publications.

Haque, M.H. & Mollah, M.Y.A., (2009). *Principles Of Physical Chemistry*. Brothers' Publication.

Bhal&Tuli,(2009). Essential Of Physical Chemistry. S. Chand Limited.

14. CHE 176: Engineering Chemistry Lab (1.5 credit hours)

Volumetric analysis: acid-base titration, oxidation-reduction titrations, pH titrations, determination of Cu, Fe and Ca volumetrically, determination of Ca and Mg in water.

C. Mathematics

15. MAT 153: Differential and Integral Calculus, Matrices (3.0 credit hours)

Differential calculus: limit, continuity and differentiability; successive differentiation and Leibnitz's theorem; expansion of functions; indeterminate forms; partial differentiation; Euler's theorem; tangent and normal; maxima and minima of functions of single variables.

Integral calculus: integration by parts; standard integrals; integration by the method of successive reduction; definite integrals; beta function; gamma function; multiple integrals.

Matrices: definition of different kinds of matrices; algebra of matrices; inverse of matrix; rank and elementary transformation of matrices; solution of system of linear equations; Eigen values and Eigen vectors; Cayley-Hamilton theorem.

Recommended Books:

Anton, H., Bivens, I., & Davis, S. (2005). Calculus. JhonWiley& Sons.

Das, B.C. & Mukharjhee, B. N. (1949). Differential Calculus.

Das, B.C. & Mukharjhee, B. N. (1998). Integral Calculus. UN Dhur.

16. MAT 155: Differential Equations and Statistics (3.0 credit hours)

Ordinary differential equation: formation of differential equations; solution of first order differential equations by various methods;

solution of differential equation of first order but higher degrees; solution of general linear equations of second and higher orders with constant co-efficient; solution of Euler's homogeneous linear differential equations.

Partial differential equation: introduction, linear and non-linear first order differential equations; standard forms; linear equations of higher order; equations of the second order with variable coefficients.

Statistics: measures of central tendency and standard deviation; moments, skewness and kurtosis; elementary probability theory and discontinuous probability distribution; continuous probability distributions, e.g. normal and exponential distribution.

Recommended Books:

Ross, S. L. (1989). Differential equations. JhonWiley& Sons.

Rainville, E.D. &Zill,D.G. (2008). A first course in differential equations with modeling applications by Elementary Differential Equations. Cengage Learning.

Singhania, R. (2008). *Ordinary and Partial differential Equation*. S. Chand and Company Ltd.

17. MAT 259: Fourier Analysis & Laplace Transformation (3.0 credit hours)

Fourier Analysis: Real and complex form of Fourier series; Finite transform; Fourier Integral; Fourier transforms and their uses in solving boundary value problems of wave equations.

Laplace Transforms: Definition; Laplace transforms of some elementary functions; sufficient conditions for existence of Laplace transforms; Inverse Laplace transforms; Laplace transforms of derivatives. The unit step function; Periodic function; Some special theorems on Laplace transforms; Partial fraction; Solutions of differential equations by Laplace transforms; Evaluation of improper integrals.

Recommended Books:

Spiegel, M.(1993). Schaum's Outline series of Fourier Analysis. McGraw-Hill.

Spiegel, M.(1965). Schaum's Outline series of Laplace Transformation. McGraw-Hill.

18. MAT 257: Coordinate Geometry and Vector Analysis (3.0 credit hours)

Co-ordinate Geometry: 2-Dimentional co-ordinate geometry: change of axes transformation of co-ordinates, simplification of equations of curves. 3-Dimentional co-ordinate geometry: system of co-ordinates, distance between two points, section formula, projection, direction cosines, equations of planes and lines.

Vector analysis: scalars and vectors, equality of vectors; addition and subtraction of vectors; multiplication of vectors by scalars; position vector of a point; scalar and vector product of two vectors and their geometrical interpretation; triple products and multiple products of vectors; linear dependence and independence of vectors; definition of line, surface and volume integral; gradient, divergence and curl of point functions; Gauss's theorem, Stoke's theorem, Green's theorem and their applications

Recommended Books:

Rahman, A.F.M., & Bhattacharjee, P.K. (2005). *A Text Book of co-ordinate Geometry with Vector Analysis*. S. Chakroborty.

Rahman, A.(2001). Linear Algebra

Anton, H. & Rorres, C. (2010). *Elementary Linear Algebra*. John Wiley & Sons.

Lipschutz, S., & Lipson, M. (2008). Schaum's Outline of Linear Algebra. McGraw Hill Professional.

D. Engineering (Basic)

19. CE 101: Engineering Mechanics (3.0 credit hours)

Coplanar and non-coplanar force systems; moments; analyses of two dimensional frames and trusses; friction; flexible chords; centroids of lines, areas and volumes; moments of inertia of areas and masses; plane motion; principles of work and energy; impulse and momentum; virtual work principle for rigid bodies.

Recommended Books:

Faires Virgil Morning, Chambers Sherman (3rd Edition), *Analytic Mechanics*, The Macmillan Company, New York.

Beer Ferdinand P., Johnston E. Russel, *Vector Mechanics for Engineers (Static & dynamics)*, Tata McGraw – Hill Publishers.

Timoshenko & Young, *Engineering Mechanics*, McGraw – Hill Publishers.

Shames I.H., *Engineering Mechanics (Static & dynamics)*, Prentice Hall of India.

20. CE 103: Surveying (3.0 credit hours)

Reconnaissance survey; linear measurements; traverse survey; triangulation, leveling and contouring; calculation of areas and volumes; problems on heights and distances; curves and curve ranging, transition curve, vertical curves; tacheometry: introduction, principles and problems on tacheometry; astronomical surveying: definition, instruments, astronomical corrections, systems of time; photogrammetry: introduction of terrestrial photography, aerial photography, reading of photo mosaic, scale; project surveying; errors in surveying; remote sensing; introduction to geographic information system (GIS) and global positioning system (GPS).

Recommended Books:

Shahjahan M., Aziz M.A., *A text Book of Surveying*. Punmia B.C, Vol I (3rd Edition) *Surveying*, Laxmi Publication.

Punmia B.C, Vol III (9th Edition) Surveying, Laxmi Publication.

Basak N.N., Surveying and Leveling, Tata McGraw – Hill.

21. CE 201: Engineering Materials (3.0 credit hours)

Properties and uses of aggregates, brick, cement; sand, lime, mortars; concrete; concrete mix design; wood structures and properties; shrinkage and seasoning; treatment and durability; mechanical properties; wood products; advanced fiber reinforced polymer (FRP) composites and its application to civil engineering; reinforcement types, basic property of FRP composites and available FRP composite products; definition of stress and strain; plane stress and strain condition; identification of strain components of elastic, elasto-plastic and elasto-visco-plastic materials; time dependent strain response of these materials due to different types of loadings; mathematical and simple rheological modeling for prediction of creep behavior; ferrocement: advantages and uses; corrosion and prevention of steel in RC structures, offshore structures and ground applications.

Recommended Books:

Aziz M.A., (1995), Engineering Materials.

Singh Gurcharan& Singh Jagdish, (1996), *Building Materials*, Standard Publishers.

Krishnaraju N, *Technology of Concrete*, CBS Publishers & Distributors.

ASTM standard method of mix design

22. CE 203: Engineering Geology and Geomorphology (3.0 credit hours)

Minerals; identification of minerals, common rock forming minerals; physical properties of minerals; mineraloids rocks; types of rocks, cycle of rock change; earthquake and seismic map of Bangladesh.

Structural geology; faults; types of faults; fold and fold type; domes; basins; erosional process; quantitative analysis of erosional land forms.

Channel development; channel widening; valley shape; stream terraces; alluvial flood plains; deltas and alluvial fans; channel morphology; channel patterns and the river basin; geology and geomorphology of Bangladesh.

Recommended Books:

Garg S. K., Physical & Engineering Geology, Khanna Publishers.

Giardino, *Changing The Face of earth Engineering Geomorphology*, Amazon Books, New Delhi.

SinghPrabin, *Engineering & General Geology*, Katson Publishing House.

Valdiya K.S., *Environmental Geology*, Tata McGraw-Hill, New Delhi.

Merrities Dorothy J., Freeman W.H. (1998), *Environmental Geology-An Earth System Science Approach*, Newyork.

23. CE 251: Mechanics of Solids I (3.0 credit hours)

Concepts of stress and strain, constitutive relationships; deformations due to tension, compression and temperature change; beam statics: reactions, axial force, shear force and bending moments; axial force, shear force and bending moment diagrams using method of section and summation approach; elastic analysis of circular shafts, solid noncircular and thin walled tubular members subjected to torsion; flexural and shear stresses in beams; shear centre; thin walled pressure vessels.

Recommended Books:

Popov Egor. P., *Engineering Mechanics of Solids*, Prentice-Hall of India.

Pytel Andrew, Singer Ferdinand L. (4th Edition), *Strength of Materials*, Harper & Row Publishers.

Beer Ferdinand P. & Johnston E. Russel, *Mechanics of Materials*, Tata McGraw-Hill Publishers.

Timoshenko S., *Strength of Materials (part I&II)*, CBS Publishers & Distributors.

Gere James M., Mechanics of Materials, McGraw-Hill Publishers.

Nash William A., *Theory and Problems of Strength of Materials*, McGraw-Hill Book Company.

24. CE 253: Mechanics of Solids II (3.0 credit hours)

Symmetric and unsymmetric bending of beams; stress transformation, failure criteria; beam deflection by direct integration and moment area method; buckling of columns; elastic strain energy and external work; cable and cable supported structures; bolted, riveted and welded joints.

Recommended Books

Popov Egor. P., *Engineering Mechanics of Solids*, Prentice-Hall of India.

Pytel Andrew, Singer Ferdinand L. (4th Edition), *Strength of Materials*, Harper & Row Publishers.

Beer Ferdinand P. & Johnston E. Russel, *Mechanics of Materials*, Tata McGraw-Hill Publishers.

Timoshenko S., *Strength of Materials (part I & II)*, CBS Publishers & Distributors.

Gere James M., Mechanics of Materials, McGraw-Hill Publishers.

25. CE 241: Fluid Mechanics (3.0 credit hours)

Development and scope of fluid mechanics, fluid properties, fluid statics, kinematics of fluid flow, fluid flow concepts and basic equations, Bernoulli's equation, energy equation, momentum equation and forces in fluid flow. Similitude and dimensional analysis, steady incompressible flow in pressure conduits, laminar and turbulent flow, general equation for fluid friction, empirical equations for pipe flow, minor losses in pipe flow. Fluid measurement: Pilot tube, orifice, mouthpiece, nozzle, venturimeter weir. Pipe flow problems – pipes in series and parallel, branching pipes, pipe networks.

Recommended Books:

Daugherty L., Finnemore, Franjini, *Engineering Mechanics with Engineering Applications*, McGraw-Hill Book Company.

Khurmi R.S., A Text Book of Hydraulics, Fluid Mechanics & Hydraulics Machines, S. Chand & Company Ltd.

StreeterVictor, WylieBenjamin, (1st SI Edition), *Fluid Mechanics*, McGraw-Hill Book Company.

StreetRobert, Watters G. Z., Vennard J.K., (7th Edition), *Elementary Fluid Mechanics*, John Wiley & Sons.

Som and Biswas, *Introduction to Fluid Mechanics and Machines*, Tata McGraw-Hill Publisher.

26. EEE 241: Fundamentals of Electrical Engineering (3.0 credit hours)

Electrical units and standards; electrical network and circuit solution:series, parallel, node and mesh analysis; instantaneous current,voltage and power, effective current and voltage, average power; sinusoidal single phase RLC circuits: phasor algebra, balanced three phase circuits; Alternating current: Instantaneous and rms values of current, voltage, power, average power, Introduction to transformer and induction motors.

Recommended Books:

Boylestad Robert L., (2007), *Introductory Circuit Analysis*, 11/e, Pearson Prentice Hall, New Jersey.

Alexander Charles K., Sadiku Matthew N.O., (2004), *Fundamental of Electric circuits*, 2/e, Mc Grow Hill, New York.

Theraja B. L., A.K. (2004), *A text Book of Electrical Technology*, Vol.I: Basic Electrical Engineering, 34/e, S. Chand & Company Ltd., New Delhi.

27. MAT 267: Numerical Methods and Analysis (2.0 credit hours)

Introduction: Motivation and errors in numerical techniques. Solution of algebraic and transcendental equations: method of iteration, False Position method, Newton-Rhapson method; Solution of simultaneous linear equations: Cramer's rule, Iteration method, Interpolation:

diagonal and horizontal difference, differences of a polynomial, Newton's formula for forward and backward interpolation, Integration: general quadrature formula, Trapezoidal rule, Simpson's rule, Weddle's rule; Solution of ordinary differential equations: Euler's method, Picard's method, Taylor's series method, Runge-Kutta method; Least squares approximation of functions: linear and polynomial regression, fitting exponential and trigonometric functions.

Recommended Books:

Burden, R. L., &Faires, J. D.(2001). Numerical Analysis. Richard Strtton.
Sastry, S.S.(2012). Introductory methods of Numerical Analysis.
Ashok K. Ghosh PHI Learning Ltd.
Hossain, M. S. Numerical Analysis. Titas publications.

28. CE 106: Practical Surveying (1.5 credit hours)

Linear and angular measurement techniques; traverse surveying; leveling and contouring; curve setting; tacheometry; project surveying; modern surveying equipment and their applications.

Recommended Books:

As advised by the course teacher.

29. CSE 252: Computer Programming Lab (1.5 credit hours)

Basic concepts of programming, algorithm and flow chart. Number system; internal representation of data. Element of structured programming language: constants, variables, data types, operators, expression, Formatted input/output Functions, control statement, arrays, strings, functions, pointers and file management. Fundamental of object oriented programming (OOP) techniques: object design, classes, inheritance, data abstraction, data encapsulation, polymorphism, operator overloading and templates. Development of programs related to Civil Engineering.

Recommended Books:

Kochan Stephen, (3rd Edition), *Programming in C*, Developer's Library, Paperback - Jul 8, 2004.

Kernighan Brian W., Ritchie Dennis, (2nd Edition), The C Programming Language, Paperback - Mar 22, 1988.

Coad Peter and Nicola Jill, *Object-Oriented Programming*, Textbook Binding - Feb 3, 1993.

Muller Peter, Introduction to Object-Oriented Programming Using C++.

Gottfried Byron, Programming with C.

Balagurusamy E. (2nd Edition), Programming in ANSI C.

Balagurusamy E. *Object oriented programming with* C++.

Deitel, Java how to program.

Schildt Herbert, (3rd Edition), Tech yourself C.

30. CE 102: Civil Engineering Drawing (1.5 credit hours)

Lines and lettering; plane geometry: drawing of linear and curved geometric figures, e.g. pentagon, hexagon, octagon, ellipse, parabola, hyperbola; solid geometry: concept of isometric view and oblique

view, theory of projections; drawing of isometric view of 3d objects such as cube, prism, pyramid, cone and cylinder; projections of cube, prism, cone, cylinder; developments of cube, pyramid, cone, cylinder; plan, elevations and sections of one storied and duplex building.

Recommended Books:

Gill, Engineering Graphics and Drafting, Kataria& Sons.

WareenJ.,Luzzadder, *Fundamentals of Engineering Drawing*, Prentice Hall of India.

31. CE 104: Computer Aided Drafting (1.5 credit hours)

Introduction to computer usage; introduction to CAD packages and computer aided drafting: drawing editing and dimensioning of simple objects; plan, elevations and sections of multi-storied buildings; reinforcement details of beams, slabs, stairs etc; plan and section of septic tank; detailed drawings of roof trusses; plans, elevations and

sections of culverts, bridges and other hydraulic structures; drawings of building services.

Recommended Books:

Omura George, *Mastering in AutoCAD* ® 2006 and AutoCAD Ltd ® 2006 –, September 2005, Sybex, Inc.

32. CE 108: Workshop Sessional (1.5 credit hours)

Carpentry Shop (3/2 hours per week)

Wood working tools; Wood working machine: Band saw, scroll saw, circular saw, jointer, thickness planer, disc sander, wood lathe; Types of sawing; Common cuts in wood works; Types of joint; Defects of timber; Commercial forms of timber. Characteristics of good timber; Use of fastening; Shop practice: Practical job, planning and estimating of a given job.

Machine Shop (3/4 hours per week)

Kinds of tools; Common bench and hand tools; Marking and layout tools, measuring tools, machine tools, bench work with job. Drilling, Shaper, Lathe and Milling Machines: Introduction, type, size and capacity, uses and applications.

Welding Shop (3/4 hours per week)

Methods of metal joints: Riveting, grooving soldering, welding; Types of welding joints and welding practice; Position of arc welding and polarity: Flat, vertical, horizontal, overhead; Electric arc welding and its machineries; Welding of different types of materials; Low carbon steel, cast iron, brass, copper, stainless steel, aluminium; Types of electrode, fluxes and their composition; Arc welding defects; Test of arc welding: Visual, destructive and non-destructive tests.

Types of gas welding system and gas welding equipment; Gases and types of flames; welding of different types of materials; Gas welding defects; test of gas welding.

Recommended Books:

As advised by the course teacher.

33. CE 202: Details of Construction Lab (1.5 credit hours)

Types of building, components of a building, design loads, framed structure and load bearing wall structure; foundations: shallow foundation and deep foundation, site exploration, bearing capacity of soil, standard penetration test; brick masonry: types of brick, bonds in brickwork, supervision of brickwork, brick laying tools, defects and strength on brick masonry, typical structures in brickwork, load bearing and non-load bearing walls, cavity walls, partition walls; lintels and arches: different types of lintels and arches, loading on lintels, construction of arches; stairs: different types of stairs, floors: ground floors and upper floors; roofs and roof coverings; shoring; underpinning; scaffolding and formwork; plastering, pointing, painting; distempering and white washing; cement concrete construction; sound insulation: acoustics; thermal insulation; house plumbing: water supply and wastewater drainage.

Recommended Books:

Kumar Sushil, Building Construction, Standard Publishers, Delhi.

Punmia B.C., *Building Construction*, Laxmi Publication Pvt. Ltd. New Delhi.

Beall Christine, *Complete Construction Masonry & Concrete*, McGraw-Hill Book Company.

34. CE 204: Engineering Materials Lab (1.5 credit hours)

General discussion on preparation and properties of concrete. Test for specific gravity. Unit weight, voids and bulking of aggregates; moisture content and absorption of coarse and fine aggregates; normal consistency and initial setting time of cement; direct tensile and compressive strengths of cement mortar; gradation of coarse and fine aggregates; concrete mixed design, design and testing of a concrete mix, sampling and testing of bricks for absorption, unit weight, efflorescence and compressive strength.

Recommended Books:

Singh Gurcharan & Singh Jagdish, (1996), *Building Materials*, Standard Publishers.

Neville A.M. & Books J.J, *Concrete Technology*, Peeson Education Ltd.

35. CE 206: Quantity Surveying (1.5 credit hours)

Earthwork excavation for roadway, earthwork computation from spot levels; estimation for residential building: estimation of slab, beam, column, footing; analysis of rates, specifications, costing of residential building; estimation and costing of septic tank; estimation and costing of underground water reservoir; estimation and costing of retaining wall; estimation and costing of slab culvert; estimation and costing of bridges; highways construction; estimation of steel truss; computer aided quantity estimation; construction site survey and estimation.

Recommended Books:

Khan Abul Faraz, *Estimating*, Sabdik Publishers.

Pasrija, Arora, Inderjit Singh, *Estimating, Costing & Valuation (Civil)*, New Asian Publishers, Delhi.

Kohli D., Kohli R.C., A Text Book on Estimating & Costing (Civil) With Drawings, Ambala Ramesh Publication.

BNBC & PWD rate-charts are helpful.

36. CE 208: Structural Mechanics Lab (1.5 credit hours)

Tension, direct shear and impact tests of mild steel specimen, compression test of timber specimen, slender column test; static bending test; hardness test of metals; torsion test; helical spring tests; determination of shear centre; study of structural models: truss, beam frame.

Recommended Books:

As advised by the course teacher.

37. CE 242: Fluid Mechanics Lab (1.5 credit hours)

Centre of pressure. Proof of Bernoulli's theorem. Flow through Venturimeter. Flow through orifice. Coefficient of velocity by coordinate method. Flow through mouthpiece. Flow over V-notch. Flow over sharp-crested weir. Fluid friction in pipe.

Recommended Books:

As advised by the course teacher.

38. CE 304: Engineering Computation Lab (1.5 credit hours)

Key Applications include MS Word, Excel, PowerPoint and Access, Internet, e-mail and the impact of computers on society.

Introduction to high-level computational programming tools; application to numerical analysis: basic matrix computation, solving systems of linear equations, non-linear equations, differential equations, interpolation and curve fitting, numerical differentiation, numerical integration; application to engineering problems: solving problems related to mechanics, numerical solution of equation of motion etc.

Recommended Books:

As advised by the course teacher.

39. CE 302: Remote Sensing and GIS Lab (1.5 credit hours)

Fundamentals of GIS, Maps and Map Projections, Scale and Coordinate system; Different types of data used in a GIS, Vector Data Structures and Raster Data Structures, Sources of GIS data, Understand the concept of spatial data; Main geographical data formats (e.g. coverage, geo-database, shapefile, grid, dxf, dwg, geotiff, GML); Data Acquisition: Digitizing, Editing; Vectorize, Rasterize; Managing Attribute Tables, Attribute Queries, Relational database; Spatial Analysis - Raster spatial analysis, Single layer vector spatial analysis, Multi-layer Vector spatial analysis, Attributes based analysis.

Recommended Books:

As advised by the course teacher.

E. Structural Engineering

40. CE 351: Structural Analysis and Design I (3.0 credit hours)

Stability and determinacy of structures; analysis of statically determinate trusses and arches; influence lines; moving loads on beams, frames and trusses; cables and cable supported structures e.g. suspension bridges.

Recommended Books:

As advised by the course teacher.

Recommended Books:

Shedd T. C. &Vawter J. (2nd Edition), *Theory of Simple Structures*, John Wiley & Sons, Inc.

Norris Charles, Wilbur J. &UtkuSenol(4th Edition), *Elementary Structural Analysis*, McGraw-Hill Int'l Edition.

Timoshenko S., Theory of Structure, CBS Publishers & Distributors.

41. CE 353: Structural Analysis and Design II (3.0 credit hours)

Wind and earthquake loads; approximate analysis of statically statically indeterminate structures, e.g., braced trusses, portal frames, mill bent and multi storied building frames, trusses and frames by virtual work method; space trusses; analysis of statically indeterminate structures by consistent deformation.

Recommended Books:

Shedd T. C. &Vawter J. (2nd Edition), *Theory of Simple Structures*, John Wiley & Sons, Inc.

Norris Charles, Wilbur J. &UtkuSenol (4th Edition), *Elementary Structural Analysis*, McGraw-Hill Int'l Edition.

Timoshenko S., Theory of Structure, CBS Publishers & Distributors.

CE 451: Structural Analysis and Design III (3.0 credit hours)

Analysis of statically indeterminate structures by slope deflection method, moment distribution and stiffness methods, member stiffness; stiffness transformations; assembly of stiffness matrices and solution for beams, frames and trusses.Flexibility matrix. Influence lines for statically indeterminate beams and frames.

Recommended Books:

Weaver William, Gere James, (2nd Edition), *Matrix Analysis of Framed Structures*, CBS Publishers & Distributors.

Norris Charles, Wilbur J. &UtkuSenol, (4th Edition), *Elementary Structural Analysis*, McGraw-Hill Int'l Edition.

Kinney J. S., *Indeterminate Structural Analysis*, Oxford & IBH Publishing Company Ltd.

Wang C. K., *Statically Indeterminate Structures*, McGraw-Hill Book Company.

42. CE 355: Design of Concrete Structures I (3.0 Credit hours)

Fundamental behavior of reinforced concrete; introduction to strength design and alternate design methods; flexural design of beams (singly reinforced, doubly reinforced, T-beam) using strength design method; shear, diagonal tension and torsion of beams; bond and anchorage; design of one way slabs; design of two-way edge supported slabs: using strip and alternate methods.

Recommended Books:

Winter George, Rourke O', Nilson, (7th Edition), *Design of Concrete Structures*, Tata McGraw-Hill Publisher, New Delhi.

Design of Concrete Structure (13th Edition)- (McGraw-Hill Higher Education).

Nilson, Drawing, Dolan Charles, Wang Chukia& Salmon Charles G. (6th Edition), *Reinforced Concrete Design*, John Wiley & Sons.

Williams Alan, *Civil & Structural Engineering Design of Reinforced Concrete Structure*, Kaplan AEC Education.

Ferguson, Breen, Jirsa, *Reinforced Concrete Fundamentals*, John Wiley & Sons Inc.

Limbrunner George F. & SpigelLeonard, *Reinforced Concrete Design*, Prentice – Hall of India Pvt. Ltd.

43. CE 357: Design of Concrete Structures II (3.0 credit hours)

Design of column supported slabs; introduction to floor systems; design of columns under uniaxial and biaxial loading, introduction to slender column; structural design of footings, pile caps; seismic detailing; shear wall; structural forms; introduction to pre-stressed concrete; analysis and preliminary design of pre-stressed beam sections.

Recommended Books:

Winter George, Rourke O', Nilson, (7th Edition), *Design of Concrete Structures*, Tata McGraw-Hill Publisher, New Delhi.

Design of Concrete Structure (13th Edition)- (McGraw-Hill Higher Education).

Nilson, Drawing, Dolan Charles, Wang Chukia& Salmon Charles G. (6th Edition), *Reinforced Concrete Design*, John Wiley & Sons.

Williams Alan, *Civil & Structural Engineering Design of Reinforced Concrete Structure*, Kaplan AEC Education.

Ferguson, Breen, Jirsa, *Reinforced Concrete Fundamentals*, John Wiley & Sons Inc.

Limbrunner George F. & Spigel Leonard, *Reinforced Concrete Design*, Prentice – Hall of India Pvt. Ltd.

44. CE 359: Design of Steel Structures (3.00 credit hours)

Behavioral principles and design of structural steel; design of tension members, bolted and welded connections; compression members; residual stress, local buckling, effective length; flexural members; lateral torsional buckling; design of beam-columns; connection design, moment connections, column bases; detailing of steel structures.

Recommended Books:

Gaylord & Gaylor, Design of Steel Structures, McGraw-Hill Inc.

45. CE 360: Steel Structures Design Lab (1.5 credit hours)

Analysis of steel structures, e.g. truss, plate girder; design of members and joints of structures; use of software in analysis and design problems.

Recommended Books:

Gaylord & Gaylor, Design of Steel Structures, McGraw-Hill Inc.

46. CE 356: Concrete Structures Design Lab I (1.5 credit hours)

Analysis and design problems based on the course 'Design of Concrete Structures I'; design of Slab Bridge, simple girder bridge and a low rise building.

47. CE 452: Concrete Structures Design Lab II (1.5 credit hours)

Analysis of buildings and PC girder bridges; design of multistoried RCC frame residential building and simple span PC Girder Bridge.

Recommended Books:

Different Manuals From AISC/AREA can be used as guideline.

F. Environmental Engineering

48. CE **311:** Water Supply Engineering (3.0 credit hours)

Water supply engineering: introduction; water demands, water supply sources, ground water exploration; aquifer properties and ground water flow, well hydraulics, water well design, drilling, construction and maintenance; water demand for rural communities; shallow hand tubewells and deep set Tara pumps for problem areas. State of centralized water management system in the country, Urbanization vs. recharge factors in the new towns and cities of the country, Rainwater harvesting.

Surface water collection and transportation; head works; pumps and pumping machineries; water distribution system; analysis and design of distribution networks; fire hydrants; water meters; leak detection; unaccounted for water.

Water quality requirements; water treatment - plain sedimentation, coagulation, flocculation, filtration, disinfection; miscellaneous treatment methods; low cost treatment methods for rural communities; water safety plans.

Recommended Books:

Aziz M. A. (1st Edition), *Water Supply Engineering*, Hafiz Book Center, Dhaka.

Mara Duncan (1976), *Sewage Treatment in Hot Climates*, John Wiley & Sons, London.

McGhee Terence, Steel E. W. (November 1990), *Water Supply & Sewerage*, McGraw-Hill Int'1 Edition.

Hammer Mark J. (4th Edition), *Water & Waste Water Treatment*, Prentice-Hall of India Pvt. Ltd.

49. CE 313: Waste Water and Sanitation Engineering (4.0 credit hours)

Wastewater engineering: introduction; water supply, sanitation and health; estimation of wastewater; wastewater collection systems; hydraulic of sewer; design, construction and maintenance of sanitary sewer and storm drainage system; sewer appurtenances; plumbing systems.

Microbiology of sewage and waste water; wastewater characteristics; preparatory, primary and secondary treatment methods and disposal; treatment and disposal of industrial effluents; sludge treatment and disposal; sanitation for low income communities – on-site sanitation systems for rural communities; low cost small bore sewerage for small townships; rural sanitation in Bangladesh.

Sustainability of water and sanitation services; participatory development approach in water and sanitation sector; community management of water and sanitation services; introduction to environment pollution; protection and management.

Recommended Books:

Ahmed M. Feroze, Rahman Md. Mujibur, (2nd Edition, 1974), *Water* Supply & Sanitation, ITN Bangladesh.

Peavy Howard, Rowe, Tchobanoglous (1985), *Environmental Engineering*, McGraw-Hill Book Company.

Mara Duncan (1976), *Sewage Treatment in Hot Climates*, John Wiley & Sons, London.

McGhee Terence, Steel E. W. (November 1990), *Water Supply & Sewerage*, McGraw-Hill Int'1 Edition.

Hammer Mark J. (4th Edition), *Water & Waste Water Treatment*, Prentice-Hall of India Pvt. Ltd.

Metcalf & Eddy, (3rd Edition), *Waste Water Engineering: Treatment, Disposal, Reuse*, McGraw-Hill Inc.

Hornung William J., *Plumbing & Heating*, Prentice-Hall, Inc. Newjersy.

Babbitt Harold E., *Plumbing*, McGraw-Hill Book Company.

50. CE 314: Environmental Engineering Lab I (1.5 credit hours)

Water quality requirements, water and waste water sampling techniques, sample preservation, physical, chemical and biological tests of water and wastewater; breakpoint chlorination, alum coagulation, sampling and laboratory analysis of air, sampling and laboratory analysis of solid waste.

Recommended Books:

USEPA (U. S. Environment Protection Agency) Standard Test Method.

WHO (World Health Organization) Standard Test Method.

Hammer Mark J. (4th Edition), *Water & Waste Water Treatment*, Prentice-Hall of India Pvt. Ltd.

G. Geotechnical Engineering

51. CE 321: Principles of Soil Mechanics (4.0 credit hours)

Introduction geotechnical Engineering: formation, type and identification of soil; soil composition; soil structure and fabric; index properties of soil; engineering classification of soil; soil compaction; principles of total and effective stresses; permeability and seepage; stress-strain-strength characteristics of soil; compressibility and settlement behavior of soils; lateral earth pressure; stress distribution.

Recommended Books:

Peck Ralph B., Hanson, Thornburn, (2nd Edition, 1974), *Foundation Engineering*, Wiley Eastern Limited, India.

Das B. M. (6th Edition), *Principles of Geotechnical Engineering*, Thomson Brooks/Cole.

Codute Donald P., *Geotechnical Engineering-Principles & Practice*, Prentice-Hall of India.

Punmia B. C. (13th Edition), *Soil Mechanics & Foundation*, Laxmi Publication, New Delhi.

52. CE 323: Foundation Engineering (3.0 credit hours)

Soil investigation techniques: settlement computation; types of foundations; bearing capacity of shallow and deep foundations; settlement and distortion of foundations; design and construction of footings, rafts and piles; slope stability analysis.

Recommended Books:

Peck Ralph B., Hanson, Thornburn, (2nd Edition, 1974), *Foundation Engineering*, Wiley Eastern Limited, India.

Bowles Joseph E., *Foundation Analysis & Design*, McGraw-Hill Book Company.

Codute Donald P., *Geotechnical Engineering-Principles & Practice*, Prentice-Hall of India.

Punmia B. C. (13th Edition), *Soil Mechanics & Foundation*, Laxmi Publication, New Delhi.

Scott C. R., (3rd Edition), *An Introduction to Soil Mechanics & Foundation*, Applied Science Publishers, London.

Tomlinson M. J., *Foundation Design & Construction*, Addison Wesley Longman Ltd.

Teng W. C., *Foundation Design & Construction*, McGraw-Hill Book Company.

53. CE 324: Geotechnical Engineering Lab I(1.5 credit hours)

Field identification tests; grain size analysis by sieve and hydrometer; specific gravity test; atterberg limits test; permeability tests; stress-strain-strength characteristics of soil;unconfined compression test; compaction test; relative density test; direct shear tests; consolidation tests.

Recommended Books:

Lambe T. William, (1951), Soil Testing for Engineers, MIT.

Day Robert W., (2001), Soil Testing Manual: Procedure, Classification Data & Sampling Practices, McGraw-Hill Book Company.

Hanna T. H. (1985), *Field Instrument in Geotechnical Engineering*, Trans Tech Publication, USA. ASTM or AASHTO Standard Test Method.

H. Transportation Engineering

54. CE 331: Transportation Planning and Traffic Engineering (3.0 credit hours)

Transportation engineering, transportation functions; transportation systems, functional components, factors in transportation development, transportation modes, public transportation, emerging modes; intelligent transportation system: components and applications; transport planning: concepts, scope and hierarchy, process, goals and objectives, inventories, socio-economic activities, land use- transport interaction, travel demand forecasting; road safety and accident analysis.

Geometric design of highways: design controls and criteria, cross sectional elements, alignment, sight distance, intersection and interchange layouts, planning and design of bicycle and pedestrian

facilities; traffic engineering: fundamentals of traffic engineering, vehicle and traffic characteristics, traffic control devices and systems, traffic studies, planning and design of parking facilities, roadway lighting; transportation in Bangladesh: transportation modes and networks, constraints and challenges, transport demand and modal share, road classification and design standards.

Recommended Books:

Rangwala, (14th Edition), *Principles of Railway Engineering*, Charter Publishing House, India.

WrightPaul H., Dixon Karen, (7th Edition), *Highway Engineering*, John Wiley & Sons, Inc.

The Asphalt Institute, The Asphalt Hand Book.

BRRI (Bangladesh Road Research Institute), Manuals on Design of Flexible / Rigid Pavement.

55. CE 333: Pavement Design and Railway Engineering (4.0 credit hours)

Pavement materials: bituminous binders, cement, aggregates, embankment material, soil stabilization; mix design methods; low cost roads; flexible and rigid pavement: pavement components and functions, pavement design and construction, road maintenance; railway engineering: general requirements, rolling stock and tracks, stations and yards, points and crossings, signaling, maintenance operations.

Recommended Books:

Wright Paul H., Dixon Karen, (7th Edition), *Highway Engineering*, John Wiley & Sons, Inc.

Papacostas C. S., Prevedouros P. D.,(3rd Edition) *Transportation Engineering & Planning*, Prentice-Hall of India.

Kadiyali L. R., (2nd Edition), *Traffic Engineering & Transportation Planning*, Khanna Publishers.

KhistryJotin, Lal Kent, (3rd Edition), *Transportation Engineering: An Introduction*, Prentice Hall Publication.

Planning Commission, Government of Bangladesh, *Transport Sector Status Report-Transport Sector Coordination Wing.*

Ministry of Communications, Government of Bangladesh, *RHD Road* Network Database: Annual Report-Roads & Highways Department.

Bangladesh Gadget, Road Design Standards, September 5, 2004

Geometric Design Standards of RHD.

Information Book of Bangladesh Railway, 2004.

Hay William Introduction to Transportation Engineering, John Wiley, New York.

56. CE 334: Transportation Engineering Lab I (1.5 credit hours)

Testing and quality control of highway materials; bituminous mix design; roadway traffic and capacity analysis; computer models and application packages.

Recommended Books:

As advised by the course teacher.

I. <u>Water Resources Engineering</u>

57. CE 341: Open Channel Flow (3.0 credit hours)

Open channel flow and its classification; velocity and pressure distributions; energy equation, specific energy and transition problems; critical flow and control; principles of flow measurement and devices; concept of uniform flow, Chezy and Manning equations, estimation of resistance coefficients and computation of uniform flow; momentum equation and specific momentum; hydraulic jump theory and analysis of gradually varied flow;

Recommended Books:

Chow VenTe, (1959), *Open Channel Hydraulics*, McGraw-Hill Book Company.

RangaRaju K. G., *Flow Through Open Channels*, Tata McGraw-Hill Publisher, India.

58. CE 345: Hydrology, Irrigation Engineering and Flood Management (4.0 credit hours)

Hydrologic cycle; hydrologic measurement: precipitation, evaporation and stream flow; hydrographs; plant-soil-water relationship; consumptive use and estimation of irrigation water requirements; methods of irrigation; quality of irrigation water; problems of irrigated land; flood and its management.

Recommended Books:

GargSantosh K., (17th Edition, 2003), *Irrigation Engineering & Hydraulic Structures*, Khanna Publishers.

HansenV.,Israelsen W., Stringham,*Irrigation Principles & Practices*, John Wiley & Sons, Inc.

MajumderD.K., *Irrigation Water Management Principles & Practice*, Prentice-Hall of India Pvt. Ltd.

59. CE 342: Open Channel Flow Lab (1.5 credit hours)

Broad-crested weir; sluice gate; venturi flume; parshall flume; Cut throat flume; hydraulic jump; velocity distribution profile; Manning's roughness coefficient; specific force and specific energy.

Recommended Books:

As advised by the course teacher.

J. <u>Civil Engineering Practice</u>

60. CE 491: Project Planning and Construction Management (3.0 credit hours)

Project planning and evaluation; feasibility reports; cash flows, payback period, internal rate of return; benefit-cost ratio; cost-benefit analysis case studies; Planning and scheduling, PERT, CPM; resource scheduling; linear programming and application.

Principles of management; construction management: principles, project organization, methods and practices, technology, management of materials and equipments, site management, contracts and specifications, inspection and quality control, safety, economy. Conflict management; psychology in administration: human factors

in management; human resource management. Demand forecasting; inventory control; stores management; procurement; legal issues in construction; environmental regulations.

Recommended Books:

Kerzner Harold, (7th Edition), *Project Management: A System* Approach to Planning, Scheduling & Controlling, John Wiley & Sons.

Riggs James L., (3rd Edition), *Production Systems: Planning Analysis & Control* John Wiley & Sons, New York.

Clough Richard H., SearsG.A., *Construction Project Management*(4th Edition) (August 2000), John Wiley & Sons.

61. CE 493: Professional Practices, Communication and Ethics (3.0 credit hours)

Project, its characteristic feature, project life cycle; type of contracts; procurement regulations and law; documents for procurement of works, goods and services and their application; contract risk and contract responsibility; insurances; tender procedure; claims, disputes and arbitration procedure; measures for reducing fiduciary risks.

Introduction to communication concepts, modes of communication, methods of effective communication; writing reports; oral presentation of reports; writing proposals; preparing effective business messages; conducting meetings; strategies for effective speaking and successful inter personal communication; job application process, interviews and follow-ups.

Introduction to the code of ethics for Professionals. Legislation for Professionals.

Recommended Books:

Corporate Communication: Theory and Practice by Michael B. Goodman.

Corporate Communication: Strategic Adaptation for Global Practice by Michael B. Goodman, Peter B. Hirsch.

Corporate communication by Paul A. Argenti.

62. CE 494: Professional Practices and Communication Sessional (1.50 credit hours)

Application of communication theory and professional practice approaches in a controlled class room environment; this may include case study analysis, role playing, preparing small reports and proposals, class room presentations and individual reports etc.

Plumbing design- water supply (hot water and cold water) and sewage design of multistoried buildings, Rainwater Harvesting- planning and designing of rainwater storage structures, planning and design of ground water storage structures, design of rainwater harvesting filters, maintenance and monitoring of rainwater harvesting system.

Recommended Books:

As advised by the course teacher.

63. CE 495: Socio-Economic Aspects of Development Projects (3.0 credit hours)

Economics and social structure; development and economic growth; socio-economic indicators; concept of human development, human development index; gender related human development index; human poverty and human poverty index; poverty reduction strategies in concepts of sustainable development: Bangladesh: MDGs. Characteristics of development projects; human interest related aspects; population displacement; resettlement and rehabilitation Productivity; land loss, land use and land ownership strategy: patterns; fisheries and aquaculture; deforestation and afforestation; communication, commerce, industries and other economic benefits; water supply, sanitation, health and nutrition; inequalities in distribution of benefits and losses; Socio-economic impact assessment approach; socio-economic survey; case studies.

Recommended Books:

Understanding Socio-economic and Political Factors to Impact Policy Change. Report No. 36442 – GLB. The World Bank, Social Development Department, November 2006.

Independent evaluation at the Asian development bank by Oliver Serrat.

Stone, S., A. Strutt, and T. Herte.2010.Assessing Socioeconomic Impacts of Transport Infrastructure Projects in the Greater Mekong Sub region.ADBI Working Paper 234. Tokyo: Asian Development Bank Institute. Available: <u>http://www.adbi.org/working-paper/2010/08/03/3976.socioeconomic.transport.infrastructure.mekong/</u>

64. CE 498: Business and Career Development (3.0 credit hours)

Techniques of effective communication in professional environment; writing techniques of modern business letters, memos and reports; human resource management: source of manpower, methods of selection and recruitment, development and motivating the workforce, appraisal procedures, employee compensation and benefits; basic marketing management, segmentation and market

Recommended Books:

As advised by the course teacher.

K. Optional Courses

65. CE 453: Introduction to Finite Element Method (2.0 credit hours)

Introduction to finite element method as applied to stress analysis problems; basic equations in elasticity, matrix displacement formulation, element shapes, nodes, nodal unknowns and coordinate system, shape functions, strain displacement matrix, methods for assembling stiffness equations e.g. direct approach, Galerkin's method, virtual work method, principle of minimum potential energy; introduction to isoperimetric formulation; discrimination of a structure and mesh refinement, one dimensional stress-deformation and two dimensional plane stress and plane strain analysis of stress deformation problems; numerical integration and computer application.

Recommended Books:

Buchanon Georg R., *Theory & Problems of Finite Element Analysis*, McGraw-Hill Book.

Chandrupatla, D. Belegundu, Introduction to Finite Element in Engineering, Prentice-Hall, Inc.

66. CE 455: Prestressed Concrete (2.0 credit hours)

Prestressed Concrete: concepts of prestressing; materials; anchorage systems; loss of prestress; analysis of sections for flexure, shear, bond and bearing; analysis of end block and composite sections; beam deflections; cable layout; partial prestress.

Design of prestressed concrete beams for simple and continuous spans; ideas about use of AASHTO – PCI sections for standard spans;

design considerations for prestressed concrete pipes, piles, poles and railway sleepers.

Recommended Books:

LinT.Y., BurnsNed H, (3rd Edition), *Prestressed Concrete*. **67. CE 457: Design of Concrete Structures III (2.0 credit hours)**

Analysis and design for torsion; design of one way and two way joist slabs with or without beam on the column line; design and detailing of lateral load resisting components: shear wall, lift cores, diaphragm etc.; design of reinforcement at joints.

Recommended Books:

LinT.Y., BurnsNed H, (3rd Edition), *Prestressed Concrete*, John Wiley & Sons, Inc.

Winter George, Rourke O', Nilson, (7th Edition), *Design of Concrete Structures*, Tata McGraw-Hill Publisher, New Delhi.

Design of Concrete Structure (13th Edition)- (McGraw-Hill Higher Education)

Nilson, Drawing, Dolan Charles, Wang Chukia& Salmon Charles G. (6th Edition), *Reinforced Concrete Design*, John Wiley & Sons.

Williams Alan, *Civil & Structural Engineering Design of Reinforced Concrete Structure*, Kaplan AEC Education

Limbrunner George F. & Spigel Leonard, *Reinforced Concrete Design*, Prentice – Hall of India Pvt. Ltd.

68. CE 459: Dynamics of Structures (2.0 credit hours)

Single degree of freedom system, formulation of equation of motion; free vibration response; response to harmonic, impulse and general dynamic loading; vibration analysis by Rayleigh's method; response spectra; two degrees of freedom system.

Recommended Books:

Dynamics of Structures (4th Edition) By Anil K. Chopra

Fundamentals of Structural Dynamics By Roy R. Craig, Andrew J. Kurdila

Structural Dynamics: Theory and Computation By Mario Paz

Dynamics of Structures by Clough and Tenzial,

69. CE 461: Introduction to Steel-Concrete Composite Structures (2.0 credit hours)

Introduction to composite structures; advantages of composite construction; interaction between steel and concrete, shear connectors, elastic analysis of composite beams, beam-column connections, behavior of different types of composite columns, axial load capacity and interaction diagrams for composite columns.

Recommended Books:

Steel-Concrete Composite Structures by R Narayanan

Composite Structures of Steel and Concrete: Beams, Slabs, Columns, and Frames for Buildings, 3rd Edition by R. P, Johnson

Design of Composite Steel-Concrete Structures by Lloyd. C. P. Yam

Structural Steel: Steel-concrete composite structures by N. E. Shanmugan and Y. S. Choo

70. CE 454: Computer Aided Analysis and Design Sessional (1.5 credit hours)

Computer aided analysis and design of various reinforced concrete and steel structures, e.g. high-rise building, modular bridge, water tower etc.

Recommended Books:

As advised by the course teacher.

71. CE 411: Solid and Hazardous Waste Management (2.0 credit hours)

Solid Waste Management: sources and types of solid wastes; physical and chemical properties of solid wastes; solid waste generation; onsite handling, storage and processing; collection of solid wastes; transfer stations and transport; ultimate disposal methods; resources and energy recovery and recycling; soil pollution; industrial solid waste collection and disposal.

Hazardous Waste Management: identification, sources and characteristics of hazardous wastes; hospital waste management practices; legal aspects; auditing and prevention; methods of treatment and disposal – physical, chemical, biological and thermal treatment; stabilization and solidification, engineering storage, incineration, landfill and deep burial.

Recommended Books:

Peavy, Rowe, Tchobanoglous, *Environmental Engineering*, McGraw-Hill Inc.

Lagrega, Buckingham, J. Evans, (2nd Edition), *Hazardous Waste Management*, McGraw-Hill Book Company.

72. CE 413: Environmental Pollution Management (2.0 credit hours)

Environmental pollution and its Control; water pollution: sources and types of pollutants; waste assimilation capacity of streams; dissolved oxygen modeling; ecological balance of streams; industrial pollution; heavy metal contamination; detergent pollution and eutrophication; groundwater pollution; marine pollution; pollution control measures: water quality monitoring and management.

Air pollution: sources and types of pollutants; effects of various pollutants on human health, materials and plants; air pollution meteorology; global warming, climate change and ozone layer depletion; acid rain; air pollution monitoring and control measures; introduction to air quality models.

Recommended Books:

Masters Gilbert M., (2nd Edition), *Introduction To Environmental Engineering & Sciences*, Prentice-Hall of India.

Vigil Kenneth, (2003), An Introduction To Water Quality & Pollution Control, Oregon State University Press.

73. CE 415: Environmental and Sustainable Management (2.0 credit hours)

Environment and development projects: environment and sustainable development; environmental policies and legislation; environmental implication of sectoral development; environmental quality standards; environmental issues and priorities; environmental impact assessment of development schemes-baseline studies, assessment methodologies; economics of environmental management; contemporary issues; case studies.

Recommended Books:

Environmental Impact Assessment For Developing Countries In Asia-ADB, 1997

Canter Larry W., *Environmental Impact Assessment*, McGraw-Hill Book Company.

74. CE 414: Environmental Engineering Lab II (1.5 credit hours)

Design of water supply and sewerage system: estimation of industrial, domestic and fire demands, designing deep tube well and water distribution network; estimation of industrial, domestic and commercial wastewater generation, wastewater network design; household plumbing system design; design of water and wastewater treatment plant; computer application in environmental engineering; field visits and reporting.

Recommended Books:

As advised by the course teacher. **75. CE 421: Earth Retaining Structures (2.0 credit hours)**

Foundation of structures subjected to lateral loads; rigid and flexible earth retaining structures; methods of construction: dewatering and slurry-wall construction, braced excavation, sheet piles, cofferdams, caissons.

Recommended Books:

Bowles Joseph E, *Foundation Analysis & Design*, McGraw-Hill Book Company.

Teng W.C., Foundation Design & Construction, McGraw-Hill Book Company.

Schmidt Louis V., (1998), Vibration Theory, Asia Education Series.

Das B.M., (6th Edition), *Principles of Geotechnical Engg.*, Thomson Books/Cole.

76. CE 425: Soil-Water Interaction (2.0 credit hours)

Introduction to soil-water interaction problems: permeability, capillarity and soil suction; slopes subjected to water current, wave action etc; theories of filters and revetment design; geotechnical design of landfills.

Recommended Books:

Bowles Joseph E, *Foundation Analysis & Design*, McGraw-Hill Book Company.

Teng W.C., *Foundation Design & Construction*, McGraw-Hill Book Company.

Das B.M., (6th Edition), *Principles of Geotechnical Engg.*, Thomson Books/Cole.

77. CE 423: Elementary Soil Dynamics (2.0 credit hours)

Elementary vibrations; dynamic properties of soil; seismic response of soils: site effects, site amplification, liquefaction problems, remedial measures and earthquake hazards.

Recommended Books:

Coduto Donald P., *Geotechnical Engineering: Principles & Practice*, Prentice-Hall of India.

Punmia B.C., (13th Edition), *Soil Mechanics & Foundations*, Laxmi Publication, New Delhi.

Bowles Joseph E, *Foundation Analysis & Design*, McGraw-Hill Book Company.

Teng W.C., Foundation Design & Construction, McGraw-Hill Book Company.

Das B.M., (6th Edition), *Principles of Geotechnical Engg.*, Thomson Books/Cole.

78. CE 427: Geotechnical Earthquake Engineering (2.0 credit hours)

Cyclic response of soils; local site effects; wave propagation through soil; site response analysis; liquefaction and post liquefaction behaviour; seismic hazard analysis; seismic soil-structure interaction of foundations.

Recommended Books:

Peck Ralph B., Hanson, Thornburn, (2nd Edition, 1974), *Foundation Engineering*, Wiley Eastern Limited, India.

Bowles Joseph E., *Foundation Analysis & Design*, McGraw-Hill Book Company.

Lambe T. William, (1951), Soil Testing for Engineers, MIT.

Day Robert W., (2001), Soil Testing Manual: Procedure, Classification Data & Sampling Practices, McGraw-Hill Book Company.

Hanna T. H. (1985), *Field Instrument in Geotechnical Engineering*, Trans Tech Publication, USA.

ASTM or AASHTO Standard Test Method.

79. CE 424: Geotechnical Engineering Lab II (1.5 credit hours)

Computer aided design of foundations: footing, pile and pile cap, pier, raft/mat foundations and caisson; retaining structures: shore pile, abutment, retaining walls; reinforced soils.

80. CE 431: Traffic Planning and Management (2.0 credit hours)

The transportation planning process; traffic management concepts; traffic accident investigations; city road and street networks: grade separation and interchanges, pedestrian and bicycle facilities. The urban bypass; environmental aspects of highway traffic and transportation projects; elements of traffic flow.

Recommended Books:

Wright Paul H., DixonKaren, (7th Edition), *Highway Engineering*, John Wiley & Sons, Inc.

Kadiyali L.R., (2nd Edition), *Traffic Engineering & Transportation Planning*, Khanna Publishers.

O'Flaherty C.A., *Highway-Traffic Planning & Engineering*, Edward Arnold, UK.

The Institute of Transportation Engineers, Transportation & Traffic Engineering Hand Book, Prentice-Hall (1982)

81. CE 433: Pavement Management, Drainage and Airport (2.0 credit hours)

Pavement management systems; evaluation and strengthening of pavements; drainage: highway drainage and drainage structures; airports: importance, advantages and trends in air transportation, planning and design of airports, aircraft characteristics related to airport design, types and elements of airport planning studies, airport configuration, geometric design of the landing area, terminal area, heliports, design of airport pavements, lighting, marking and signing, airport drainage.

Recommended Books:

Wright Paul H., Dixon Karen, (7th Edition), *Highway Engineering*, John Wiley & Sons, Inc.

Horonjeff Robert, McKelvey, (4th Edition, 1994), *Planning & Design of Airports* McGraw-Hill Book Company.

Federal Aviation Administration (FAA) Guidelines.

82. CE 435: Urban Transportation Planning and Management (2.0 credit hours)

The urban transport problems and trends; road network planning; characteristics and operation of different transit and para transit modes, planning transit network; estimating system costs and benefits, pricing and financing, evaluation, transit users attitude, policies and strategies for transit development in metropolitan cities; freight traffic planning and management; selected transport case studies, congestion management; safety management; environmental issues and sustainable transport.

Recommended Books:

Papacostas C.S., Prevedouros, (3rd Edition), *Transportation Engineering & Planning*, Prentice-Hall of India.

Wright Paul H., Dixon Karen, (7th Edition), *Highway Engineering*, John Wiley & Sons, Inc.

Documents on Traffic Engineering Administration and Legislation in Courtesy of RHD, LGRD, City Corporation, Planning Commission

83. CE 434: Transportation Engineering Lab II (1.5 credit hours)

Design of flexible and rigid pavement and air field pavements; geometric design; road intersection design and interchanges; traffic studies.

Recommended Books:

As advised by the course teacher.

84. CE 443: Groundwater Engineering (2.0 credit hours)

Groundwater in hydrologic cycle and its occurrence. Physical properties and principles of groundwater movement. Groundwater and well hydraulics. Groundwater resource evaluation. Groundwater levels and environmental influences. Water mining and land subsidence. Groundwater pollution and contaminant transport. Recharge of groundwater. Saline water intrusion in aquifers. Groundwater management.

Recommended Books:

Todd David Keith, Ground Water Hydrology.

Herman Bouwer, Ground Water Hydrology.

Raghunath H M., Ground Water Hydrology.

Uffink J G M., Ground Water Hydrology.

85. CE 445: River Engineering (2.0 credit hours)

Behavior of alluvial rivers; river channel pattern and fluvial processes; aggradation and degradation, local scours, river training and bank protection works; navigation and dredging sediment movement in river channels, bed form and flow regimes.

Recommended Books:

Garg Santosh K. (17th Edition, 2003), *Irrigation Engineering & Hydraulic Structures*, Khanna Publishers.

Petersen, M.S. (1986). River Engineering. Prentice-Hall

Graf, W.H., Hydraulics of Sediment Transport, McGraw-Hill.

Grade R.J., Ranga RajuK.G., (2nd Edition), *Mechanics of Sediment Transportation & Alluvial Stream Problems*. Wiley Eastern Ltd.

86. CE 447: Hydraulic Structures (2.0 credit hours)

Principles of design hydraulic structures, types of hydraulic structures; design of dams, barrages, weirs, spillways, energy dissipators and spillway gates; cross drainage works.

Recommended Books:

Garg Santosh K. (17th Edition, 2003), *Irrigation Engineering & Hydraulic Structures*, Khanna Publishers.

Sharma R.K., *Text Book of Irrigation Engineering & Hydraulics Structures*, Oxford and IBH Publishing, New Delhi.

Different Design Manual/Handbook/Annual Reports of Bangladesh Water Development Board.

87. CE 449: Coastal Engineering (2.0 credit hours)

Coast and coastal features; tides and currents; tidal flow measurement; waves and storm surges; docks and harbors; forces of waves and tides in the design of coastal and harbor structures; coastal sedimentation processes; deltas and estuaries; shore protection works; dredging and dredgers.

Recommended Books:

Sorensen Robert M., Basic Coastal Engineering, John Wiley & Sons.

Horikawa K., (1978), *Coastal Engineering an Introduction to Ocean Engineering*, University of Tokyo Press.

Kamphuis J.W., (1999), Introduction to Coastal Engineering & Management, World Scientific Publishing.

DeanR.G., and Dalrymple R., (2001), *Coastal Processes with Engineering Applications*, Cambridge University Press.

88. CE 448: Water Resources Engineering Lab (1.5 credit hours)

Design of hydraulic structures, river training works. Ground water resource assessment and water well design.

Recommended Books:

As advised by the course teacher.

Chapter 5

Course Curriculum Mapping for Undergraduate Studies

5.1 Vision and Mission of UITS:

Vision of UITS:

University of Information Technology and Sciences aims at redefining goals of higher education and sustainable economic growth of the country through a tripartite relationship among itself, industries and reputed universities, institutions at home and abroad. The University imparts experiential learning which enables students, teachers and community partners to integrate academic learning with practice while addressing specific community needs. The learning process empowers students to take initiative and to engage in an integrated and multidimensional ways to address the diverse cultural needs of Bangladesh and the global village. In UITS, we believe that teachers are facilitator of learning rather than a presenter of information. In order to challenge the needs of learning, UITS has the congenial atmosphere for disseminating the knowledge by providing logistic support and infrastructure. The University strives to attract and nurture scholars from the national and international universities through excellence in teaching and learning, research and knowledge exchange, scaffolding future scholars by fostering creativity, tolerance and responsibility.

Mission of UITS:

The University of Information Technology and Sciences will endeavor

- To provide a comprehensive education by developing fully the intellectual and personal strengths of its students while allowing knowledge to be more accessible to the larger community.
- To explore higher education in an experiential learning environment, Critical thinking, creativity, innovation, scholarly endeavors, and the enhancement of comprehensive knowledge.

- To impart a flexible and supportive intellectual environment that retains and nurture scholars, students and staff of the highest caliber in a culture that enhances learning and freedom of thought, enquiry and expression.
- To generate and disseminate knowledge to strengthen our society and the environment.
- To support student affiance and student development with local and international organization for Project and Research collaboration through the research center.
- To create new future values by taking on challenging and innovative research.

5.2 Vision and Mission of Department of Civil Engineering:

Vision:

The Vision of the Department of Civil Engineering is to achieving excellence in quality higher education, research, innovation, and societal services. Our students are the agents who make an impact in the society as professionals, academics, and innovators for sustainable development

Mission:

The Department of Civil Engineering seeks to equip and produce highly qualified and committed academic leaders, professional practitioners, and administrators to deal adequately with Engineering and Technological challenges towards achieving societal upliftment and sustainable development.

5.3 Program Objectives, Outcomes and Mapping:

Program Educational Objectives (PEOs)

PEO1: Apply civil engineering knowledge to develop systems, and provide services that meet societal needs and achieve sustainable development.

PEO2: Increase personal knowledge and technical skills through professional and graduate study, certifications, and work

responsibilities and challenges in order to be the preferred choice of employers.

PEO3: Contribute time, knowledge and skills to the profession, family, community, and the world beyond job responsibilities.

1 Tugi ani Li	earning Outcomes (PLOS)	
Program Outcomes	Civil Engineering student outcomes	Criteria
PLO1	an ability to apply knowledge of mathematics, science, and engineering	[ABET a]
PLO2	an ability to design and conduct experiments, as well as to analyze and interpret data	[ABET b]
PLO3	an ability to design a system, component, or process to meet desired needs with realistic constraints such as economic, environment, social, political, ethical, health and safety, manufacturability, and sustainability	[ABET c]
PLO4	an ability to function on multi-disciplinary teams	[ABET d]
PLO5	an ability to identify, formulate, and solve engineering problems	[ABET e]
PLO6	an understanding of professional and ethical responsibility	[ABET f]
PLO7	an ability to communicate effectively	[ABET g]
PLO8	the broad education necessary to understand the impact of engineering solutions in a global, economic, environment and social context for serving the society	[ABET h]
PLO9	a recognition of the need for, and an ability to engage in life- long learning	[ABET i]
PLO10	a knowledge of contemporary issues	[ABET j]
PLO11	an ability to use the techniques, skills	[ABET k]

Program Learning Outcomes (PLOs)

and modern engineering tools necessary	
to civil engineering practice	

Mapping PLOs against PEOs

Program	Program Educational Objectives (PEOs)									
Learning	PEO1	PEO2	PEO3							
Outcomes										
(PLOs)										
PLO1	\checkmark									
PLO2	\checkmark									
PLO3	\checkmark									
PLO4		\checkmark								
PLO5	\checkmark	\checkmark								
PLO6		\checkmark								
PLO7		\checkmark								
PLO8		\checkmark								
PLO9		\checkmark								
PLO10										
PLO11	\checkmark	\checkmark								
Total	6	8	4							

Mapping PEOs against Vision and Mission of the Department

Program	Vision of the	Mission of the
Educational	Department	Department
Objectives		
(PEOs)		
PEO1	\checkmark	
PEO2		
PEO3		
Total	2	2

Mapping PEOs against Vision and Mission of the University

Program Vision of the	Mission of the
-----------------------	----------------

Educational Objectives	University	University
(PEOs)		
PEO1		
PEO2	\checkmark	\checkmark
PEO3		
Total	2	2

Mapping PLOs against CLOs

			Program Learning Outcomes (PLOs)											
S L N o.	Cours e Code	Course Title	Credits	PLO1	PLO2	PLO3	PL04	501d	PLO6	PL07	801d	607d	PLO10	PL011
General Education (9.5 Credits)														
1	GED 101	The Four Skills of Communica tion in English I	2. 0				\checkmark			\checkmark				
2	GED 102	Developing English Language skills lab	1. 5				\checkmark			\checkmark				
3	GED 153	Accounting	2. 0											
4	GED1 19	History of the Emergence of Independent Bangladesh (optional)	2. 0						\checkmark			\checkmark		
5	GED1 17	Bengali Language and Literature (optional)	2. 0							\checkmark				
6	GED1 05	Bangladesh Studies (optional)	2. 0			\checkmark								
7	GED 155	Sociology (optional)	2. 0			\checkmark			\checkmark				\checkmark	
8	GED 157	Economics (optional)	2. 0										\checkmark	
9	GED 159	Government (optional)	2. 0										\checkmark	
			Ba	asic S	cienc	e (12	Credi	its)						
10	PHY 175	Physical Optics, Waves and Oscillation, Heat and Thermodyna mics	3. 0	\checkmark	\checkmark									
11	PHY 177	Structure of Matter, Electricity and Magnetism and Modern	3. 0	\checkmark	\checkmark									

		Physics									1			
	PHY	Engineering	1.											
12	176	Physics Lab	1. 5											
	CHE1	Engineering	3.											
13	75	Chemistry	3. 0											
	15	Engineering	0											
14	CHE	Chemistry	1.											
14	176	Lab	5	N	N							N		
		Lab				(1)		4						
Mathematics (12 Credits) Differential														
	MATTI		2											
15	MAT1	and Integral	3. 0											
	53	Calculus,	0											
Matrices														
	MAT	Differential	2											
16	MAT	Equations	3.											
	155	and	0											
		Statistics												
	MAT	Coordinate	~											
17	MAT	Geometry	3.											
	257	and Vector	0											
		Analysis												
		Fourier												
10	MAT	Analysis	3.	,	1									
18	259	and Laplace	0											
		Transformat												
		ion		_	<u> </u>									
	05			c Eng	ineer	ing (4	14 Cr	edits)		1	1			
19	CE	Engineering	3.											
	101	Mechanics	0											
20	CE	Surveying	3.											
	103		0											
21	CE	Engineering	3.											
	201	Materials	0											
	6 5	Engineering												
22	CE	Geology and	3.											
	203	Geomorphol	0											
	07.25	ogy	-											
23	CE25	Mechanics	3.					\checkmark						
	1	of Solids I	0											
24	CE25	Mechanics	3.					\checkmark						
	3	of Solids II	0					<u> </u>			<u> </u>			
25	CE	Fluid	3.					\checkmark						
	241	Mechanics	0					<u> </u>			<u> </u>			
	FFF	Fundamenta	~					1						
26	EEE	ls of	3.											
	241	Electrical	0					1						
		Engineering												
		Numerical	~											
27	CE	Methods	2.											
	209	and	0											
	CE10	Analysis	1											
28	CE10	Practical	1.											
_	6	Surveying	5					<u> </u>	L	<u> </u>			l	

29	CSE 252	Computer Programmin g Lab	1. 5		\checkmark			\checkmark					
30	CE 102	Civil Engineering Drawing	1. 5	\checkmark	V								
31	CE 104	Computer Aided Drafting	1. 5	\checkmark	\checkmark								
32	CE 108	Workshop Sessional	1. 5		\checkmark								\checkmark
33	CE 202	Details of Constructio n Lab	1. 5	\checkmark			\checkmark				\checkmark	\checkmark	
34	CE 204	Engineering Materials Lab	1. 5		\checkmark								\checkmark
35	CE 206	Quantity Surveying	1. 5		\checkmark								\checkmark
36	CE 208	Structural Mechanics Lab	1. 5		\checkmark								
37	CE 242	Fluid Mechanics Lab	1. 5		\checkmark								
38	CE 304	Engineering Computatio n Lab	1. 5		\checkmark								
39	CE 302	Remote Sensing and GIS Lab	1. 5		\checkmark								\checkmark
		<u>St</u>	uctu	ral Eı	ngine	ering	(22.5	Cred	its)				
40	CE 351	Structural Analysis and Design I	3. 0	\checkmark		V		\checkmark					
41	CE 353	Structural Analysis and Design II	3. 0	\checkmark		V		V					
42	CE 451	Structural Analysis and Design III	3. 0	\checkmark		\checkmark		\checkmark					
43	CE 355	Design of Concrete Structures I	3. 0	\checkmark		\checkmark		\checkmark					
44	CE 357	Design of Concrete Structures II	3. 0	\checkmark		\checkmark		\checkmark					
45	CE 359	Design of Steel Structures	3. 0	\checkmark		\checkmark		\checkmark					

46CE 360Steel Structures1. 5 \checkmark \checkmark \checkmark \checkmark \checkmark 47CE35 6Structures Design Lab. \checkmark \checkmark \checkmark \checkmark \checkmark 47CE35 6Structures Design Lab. \checkmark \checkmark \checkmark \checkmark \checkmark 48CE 452Structures Design Lab. \checkmark \checkmark \checkmark \checkmark \checkmark 49CE 311Water Engineering3. 0 \checkmark \checkmark \checkmark \checkmark \checkmark 50CE 313Sanitation Sanitation0 \checkmark \checkmark \checkmark \checkmark \checkmark 50CE 313Sanitation Sanitation0 \checkmark \checkmark \checkmark \checkmark \checkmark 51CE 314Engineering Engineering1. 0 \checkmark \checkmark \checkmark \checkmark 52SCE 321Foldation Engineering3. 0 \checkmark \checkmark \checkmark \checkmark 53CE 322Solitation Engineering3. 0 \checkmark \checkmark \checkmark \checkmark 54CE 323Engineering Engineering3. 0 \checkmark \checkmark \checkmark \checkmark 54CE 331Engineering Engineering \checkmark \checkmark \checkmark \checkmark \checkmark 55CE 331Transportati Engineering 0 \checkmark \checkmark \checkmark \checkmark \checkmark 56CE 333Railway Railway Baineering 0 \checkmark \checkmark \checkmark \checkmark \checkmark 56CE 333 <t< th=""><th></th><th>1</th><th></th><th></th><th>r</th><th>-</th><th></th><th>-</th><th></th><th>-</th><th>r</th><th></th><th>-</th><th></th></t<>		1			r	-		-		-	r		-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	46				\checkmark		\checkmark							\checkmark
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	47		Structures Design Lab		\checkmark		\checkmark							\checkmark
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	48		Structures Design Lab		\checkmark		\checkmark					\checkmark		\checkmark
49CE 311Supply Engineering3. 0 \checkmark \checkmark \checkmark 50CE 313Maste water Sanitation \checkmark \checkmark \checkmark \checkmark 50CE 313Sanitation 			Envi	ironn	iental	Engi	ineeri	ng (8	.5 Cr	edits)				
50CE 313and Sanitation4. 0 $$ $$ $$ 51CE 314Environmen Engineering1. 5 $$ $$ $$ 51CE 314tal1. Engineering $$ $$ $$ 52CE 321Soil Mechanics 0 $$ $$ $$ 53CE 323Foundation Engineering 0 $$ $$ $$ 54CE 324Foundation Engineering 0 $$ $$ $$ 55CE 331and Traffic engineering 0 $$ $$ $$ 56CE 333Design and Engineering 0 $$ $$ $$ 56CE 331Engineering engineering 0 $$ $$ $$ 57CE 331Design and Engineering engineering 0 $$ $$ $$ 56CE 331Design and Engineering engineering $$ $$ $$ $$ 57CE 334Design and Engineering Lab-1 $$ $$ $$ $$ 58CE 341Channel Flow 0 $$ $$ $$ $$	49		Supply		\checkmark		\checkmark							
51CE 314tal Engineering Lab-11. 5 \checkmark \checkmark Geotechnical Engineering (8.5 Credits)52CE 321Principles of Soil Mechanics4. 0 \checkmark \checkmark \checkmark 53CE 323Foundation Engineering 03. \checkmark \checkmark \checkmark \checkmark 54CE 324Foundation Engineering 1 ab-1 \checkmark \checkmark \checkmark \checkmark Transportati on Planning and Traffic Engineering $3.$ \checkmark \checkmark \checkmark \checkmark Transportati on Planning and Traffic Engineering $3.$ \checkmark \checkmark \checkmark \checkmark 56CE 331Pavement Engineering Design and Engineering \checkmark \checkmark \checkmark \checkmark 56CE 333Pavement Engineering D \checkmark \checkmark \checkmark \checkmark \checkmark 57CE 334One Engineering D $1.$ D \checkmark \checkmark \checkmark \checkmark \checkmark 58CE 341Channel Flow $4.$ 0 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark	50		and Sanitation		\checkmark		\checkmark							
52 CE 321 Principles of Soil Mechanics 4. 0 $$ $$ $$ 53 CE 323 Foundation Engineering 3. 0 $$ $$ $$ $$ 53 CE 323 Foundation Engineering 3. 0 $$ $$ $$ $$ 54 CE 324 Geotechnica Engineering 1. 55 $$ $$ $$ $$ Transportation Engineering (8.5 Credits) Transportation Engineering (8.5 Credits) 55 CE 331 and Traffic on Planning and Traffic 0 $$ $$ $$ 56 CE 333 Pavement Design and Engineering $$ $$ $$ $$ 57 CE 334 Transportati Design and Engineering $$ $$ $$ $$ 57 CE 334 Transportati Design and Engineering $$ $$ $$ $$ 58 CE 341 Open Channel Flow $4.$ $$ $$ $$ $$	51		tal Engineering			\checkmark								\checkmark
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Geo	otech	nical	Engir	neerir	ig (8.5	5 Cre	dits)				
53 323 Engineering 0 V	52	-	Soil		\checkmark		\checkmark							
54CE 3241 Engineering Lab-I1 5 \checkmark \checkmark Transportation Engineering (8.5 Credits)55CE 331Transportation on Planning and Traffic Engineering \checkmark \checkmark 56CE 333Pavement Railway Engineering \checkmark \checkmark \checkmark 56CE 333Pavement Railway Engineering \checkmark \checkmark \checkmark \checkmark 57CE 334Open Engineering Engineering \checkmark \checkmark \checkmark \checkmark \checkmark 57CE 334Open Engineering Engineering \checkmark \checkmark \checkmark \checkmark \checkmark 58CE 341Open Flow $4.$ 0 \checkmark \checkmark \checkmark \checkmark \checkmark	53				\checkmark		\checkmark		\checkmark					
55 CE_{331} $Transportation Planningand TrafficEngineering3.056CE_{333}PavementDesign andRailwayEngineering56CE_{333}RailwayEngineering057CE_{334}CE_{1000}0Water Resources Engineering (8.5 Credits)58CE_{341}OpenFlow4.0$	54	-	l Engineering			\checkmark								\checkmark
55CE 331on Planning and Traffic Engineering3. 0 $$ $$ 56CE 333Pavement Design and Railway Engineering $$ $$ $$ 56CE 333Design and 			Tran	sport	tation	Engi	neeri	ng (8	8.5 Cr	edits)			
56CE 333Design and Railway Engineering4. 0 $$ $$ $$ $$ 57CE 334on Engineering Lab-I1. 5 $$ $$ $$ Water Resources Engineering (8.5 Credits)58CE 341Open Flow4. 0 $$	55	-	on Planning and Traffic		\checkmark		\checkmark							
57 $CE \\ 334$ on $Engineering \\ Lab-I$ 1. 5 $$ $$ Water Resources Engineering (8.5 Credits)58CE $Open \\ S41$ $4. \\ Flow$ $$ $$ $$	56	-	Design and Railway		\checkmark		\checkmark		\checkmark					
58 $\begin{array}{ccc} CE\\ 341 \end{array}$ $\begin{array}{ccc} Open\\ Channel\\ Flow \end{array}$ 4. $$ $$ $$	57		on Engineering Lab-I	5										\checkmark
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Wate	r Res	ource	s Eng	gineer	ing (8.5 C	redits	<u>s)</u>			
59 CE Hydrology, 3. $$	58		Channel		\checkmark		\checkmark		\checkmark					
	59	CE	Hydrology,	3.										

	345	Irrigation Engineering and Flood Managemen t	0											
60	CE 342	Open Channel Flow Lab	1. 5		\checkmark									\checkmark
		<u>Civil</u>	Engi	neeri	ng Pr	actic	es (10	.5 Cr	edits)	<u>)</u>				
61	CE 493	Professional Practices, Communica tion and Ethics	3. 0				\checkmark		\checkmark	\checkmark		\checkmark		
62	CE 491	Project Planning and Constructio n Managemen t	3. 0			\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		
63	CE 494	Professional Practices and Communica tion Sessional	1. 5				\checkmark		\checkmark	\checkmark		\checkmark		
64	CE49 5	Socio- Economic Aspects of Developmen t Projects (Optional)	3. 0			\checkmark					\checkmark		\checkmark	
65	CE49 8	Business and Career Developmen t (Optional) Major	3. 0				V	. (11	V	√		\checkmark	\checkmark	
			+ IVIII (Struct	nrol	Engir	oorir	5 (11 V	cieui	15)				
66	CE 453	Introduction to Finite Element Method	2. 0	√	<u>ui ai .</u>	√		5						
67	CE 455	Prestressed Concrete	2. 0	\checkmark		\checkmark		\checkmark						
68	CE 457	Design of Concrete Structures III	2. 0	V		\checkmark		\checkmark						
69	CE 459	Dynamics of Structures	2. 0	\checkmark		\checkmark		\checkmark						
70	CE 461	Introduction to Steel-	2. 0	\checkmark		\checkmark		\checkmark						

		Concrete			1				1			1	
		Composite											
		Structures											
71	CE 454	Computer Aided Analysis and Design Sessional	1. 5				1	/			V		
		Dessional	En	viron	ment	al En	gineering	g		1			
72	CE 411	Solid and Hazardous Waste Managemen t	2. 0			V	1					\checkmark	
73	CE 413	Environmen tal Pollution Managemen t	2. 0	\checkmark			1	1				\checkmark	
74	CE 415	Environmen tal and Sustainable Managemen t	2. 0			V				V		\checkmark	
75	CE 414	Environmen tal Engineering Lab-II	1. 5				١				V		\checkmark
			G	eotec	hnica	l Eng	ineering				1		
76	CE 421	Earth Retaining Structures	2. 0	\checkmark		\checkmark	٦	/					
77	CE 425	Soil Water Interaction	2. 0	\checkmark		\checkmark	١	/					
78	CE42 3	Elementary Soil Dynamics	2. 0	\checkmark		\checkmark	٦	/					
79	CE 427	Geotechnica l Earthquake Engineering	2. 0	\checkmark		\checkmark	٦	/				\checkmark	
80	CE 424	Geotechnica 1 Engineering Lab-II	1. 5				٦				\checkmark		\checkmark
		FF 0.01	Tra	nspo	rtatio	on En	gineerin	g		r	1		
81	CE 431	Traffic Planning and Managemen t	2. 0	\checkmark		\checkmark	٦	1		\checkmark			
82	CE 433	Pavement Managemen t, Drainage and Airport	2. 0	V		V	1	1					
83	CE 435	Urban Transportati on Planning	2. 0	\checkmark		\checkmark	١	/				\checkmark	

		and Managemen t												
84	CE 434	Transportati on Engineering Lab-II	1. 5					\checkmark				\checkmark		\checkmark
			Wat	er Re	sour	es Ei	ngine	ering						
85	CE 443	Ground Water Engineering	2. 0	\checkmark		\checkmark		V						
86	CE 445	River Engineering	2. 0	\checkmark		\checkmark		\checkmark						
87	CE 447	Hydraulic Structures	2. 0	\checkmark		\checkmark		\checkmark						
88	CE 449	Coastal Engineering	2. 0	\checkmark		\checkmark		\checkmark						
89	CE 448	Water Resources Engineering Lab	1. 5					\checkmark				\checkmark		\checkmark
	Т	OTAL		5 6	2 7	3 9	7	4 0	6	6	4	1 5	1 2	2 2

General Education

~	The Four Skills	Course Code	GED 101	Credit Hour	3.0
Course Title	of Communication in English I	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	Writing and Spe in student's act	aking It also cons	solidates and e oulary, Gramr	uage skills in Lister extends essential lang nar & Pronunciatio reas in English.	mage covered

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to -

CLO 1: Achieve a marked improvement in their: spoken English, reading and listening comprehension, vocabulary, conversation, pronunciation and grammar. (PLO4, PLO7)

CLO 2: Converse freely and make short oral presentations in English. (PLO7)

CLO 3: Comprehend, summarize and discuss the main points of authentic texts about general or academic Reading (**PLO4**, **PLO7**)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Achieve a marked improvement in their: spoken English, reading and listening comprehension, vocabulary, conversation, pronunciation and grammar.	Speed reading (highlighting, getting information from text quickly finding your way around texts noting key words, following main arguments, interacting with the text and summarization. Extensive reading (reading outside class books selected by teachers; at least two books will be read).	Lecture, Hand/Multimedia Demonstration	Assignment, Final Exam
Converse freely and make short oral presentations in English.	Public speaking. Speaking on favorite food.	Lecture, Hand/Multimedia Demonstration	Class Test, Final Exam
Comprehend, summarize and discuss the main points of authentic texts about general or academic Reading	Paraphrasing & Summarizing, Organizing a paragraph: topic sentence, detailed sentences, logical order and conclusions. Phonetics chart	Lecture, Hand/Multimedia Demonstration	Class Test, Assignment, Final Exam

C	Developing English	Course Code	GED 102	Credit Hour	1.5
Course Title	Language skills lab	Contact Hours/week	3.0	Prerequisite	GED 101
Synopsis	the teaching comprehensi	of test practice str ve and academical	ategies skills for ly rigorous. The I	e IELTS examination all areas of the IEL' ELTS course puts ec aking strategies. Th	TS exam. It is qual weight on

cover	s sub s	skills s	such a	as	academic	vocabulary,	academic	style	and	study	skills
each o	lay.					-		-			

CLO 1: Recognize the different types of questions asked in IELTS Tests and Use a variety of sentence patterns with grammatical accuracy (**PLO4**, **PLO7**)

CLO 2: Identify implications and propose solutions edit written work (PLO4, PLO7)

CLO 3: Transfer information gathered from listening to written answers within the set time limit (**PLO4**, **PLO7**)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Recognize the different types of questions asked in IELTS Tests and Use a variety of sentence patterns with grammatical accuracy	Critical readings (make judgments about how a text is argued, reflecting and making personal response as well as close scrutiny of language to understand writer's attitude and perspectives). Using the patterns and the rules of English grammar to produce grammatically complete and correct sentences independently. IELTS Reading, Writing, listening & Speaking practice.	Lecture, Hand/Multimedia Demonstration	Assignment, Class Test, Final Exam
Identify implications and propose solutions edit written work	Writing different types of essays: narrative, descriptive, exploratory etc. Writing paragraphs following different modes of writing: definition, description, classification, cause and effect, comparison and contrast, argumentative. Writing paragraphs following different modes of writing: definition, description, classification, cause and effect, comparison and contrast, argumentative.	Lecture, Hand/Multimedia Demonstration	Assignment, Class Test, Final Exam
Transfer information gathered from listening to written answers within the set time limit	Listening and demonstrating comprehension of a variety of sources at defined competency level (Elementary to pre- intermediate level). Listening and responding to texts (i,e, following instructions, answering questions, reacting to texts etc.)	Lecture, Hand/Multimedia Demonstration	Assignment, Class Test, Final Exam

Course		Course Code	GED 153	Credit Hour	2.0		
Title	Accounting	Contact Hours/week	2.0	Prerequisite N/A			
Synopsis	Bureaucracy, Is Good Governar	ssues of Accountabi	llity, Develop Economic Re	he major topics of pment Partners and the form and supply and overnance.	ne Agenda for		

CLO 1: Develop knowledge of accounting records and how to record transactions in them. (PLO10)

CLO 2: Prepare a set of financial statements for various forms of businesses and non-profit entities. (PLO10)

CLO 3: Apply accounting concepts, principles and practices. (PLO10)

CLO 4: Be familiar with the basic tools for analyses of financial statements. (PLO10)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Develop knowledge of accounting records and how to record transactions in them.	Financial accounting: objectives and importance of accounting, accounting as an information system; basic accounting principles; accounting equation; recording system.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Prepare a set of financial statements for various forms of businesses and non-profit entities.	Accounting cycle, journal, and ledger, and trial balance, preparation of financial statements considering adjusting entries, financial statement analysis and interpretation.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Apply accounting concepts, principles and practices.	Cost accounting: cost concepts and classification; cost- volume-profit analysis; contribution margin approach and its application, break-even analysis, target profit analysis, operating leverage.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Become familiar with the basic tools for analyses of financial statements.	Absorption costing versus variable costing, job order costing, capital budgeting, long run planning and control.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Course Title		Course Code	GED 119	Credit Hour	2.0		
	Emergence of Bangladesh	Contact Hours/week	2.0	Prerequisite	N/A		
This course has been designed to acquaint the students with the history					vith the history of		
Synopsis	Synopsis Bangladesh in order to instill in them the spirits of nationalism so as to enable the						
	to become proud citizens of Bangladesh.						
Course I	Learning Outco	mes (CLOs):	Upon comp	letion of the course,	, the students will be		
able to -							
CLO 1: Discuss the glorious past of Bangladesh and the creations of ancestors. (PLO6)							
CLO 2: Designate the deferent phases of the historical development and the diversity of							
Cultural tr	Cultural trait.(PLO6 , PLO9)						

CLO 3: Estimate the heroic movements of the people of Bangladesh.(**PLO9**) CLO 4: Appraise the contribution of Bangladeshdu Sheikh Mujibur Rahman (**PLO6**, **PLO9**) CLO 5: Evaluate the emergence of Bangladesh as an independent country. (**PLO9**)

Course Learning Outcomes (CLOs)	Course Co	ntent	Teaching Learning Strategy	Assessment Strategy	
Discuss the glorious past of Bangladesh and the creations of ancestors.	of Bangladesh and Political Geography: Hand, Creations of Principalities (Janapads)		Lecture, Hand/Multimedia Demonstration	Class Test, Assignment, Final Exam	
Designate the deferent phases of the historical development and the diversity of Cultural trait.	Sultanate-Ikhtiyar Uddin Muhammad Bakhtiyar Khalji, s (d) The Mughals and Bengal-Revolt of the BharoBhuyean (e) Bengal and the British- The Battle of the Plassey, and (g) The First War of Independence –the so- called Sepoy Mutiny.		Lecture, Hand/Multimedia Demonstration	Class Test, Assignment, Final Exam	
Estimate the heroic movements of the people of Bangladesh.	Bengal within	Annulment eation of status of	Lecture, Hand/Multimedia Demonstration	Class Test, Assignment, Final Exam	
Appraise the contribution of Bangabandhu Sheikh Mujibur Rahman	Programme. Disparity betw and West Pak Struggle for under Military Pakistan.	United Front (Jukto- Front).Twenty One point Programme. Growing Disparity between East and West Pakistan and Struggle for Autonomy under Military Rule in		Class Test, Assignment, Final Exam	
Evaluate the emergence of Bangladesh as an independent country.	Role of Bangab	Great Men and History- Role of Bangabandhu and the Emergence of		Term paper, Class Test, Final Exam	
Course Bengali	Course Code	GED 117	Credit Hour	2.0	
Title Language an Literature	d Contact Hours/week	2.0	Prerequisite	N/A	
Synopsis This course has been designed to discuss the major topics of the study of Bengali language and literature which opens up the world of human expression and communication. Students can improve their ethical value by this course. On this course students will not only build a detailed knowledge and understanding of					

literature and language, also will gain insights into the social and cultural issues that affect our lives. In this course students get the opportunity to explore the relationship between literature, language and society.

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Determine the Bengali Spelling, Punctuations, voice change, Terminology etc. (**PLO7**) CLO 2: Identify the right way to make a perfect CV, Show Cause Letter and Speech for various aspects. (**PLO7**)

CLO 3: Criticize all literary terms: Poems, Short Stories, Drama, Novel and dissertation. **PLO7**)

CLO 4: Elucidate the knowledge of Bengali Language Movement through drama and Liberation war through novel. (**PLO7**)

CLO 5: Find and realize the value of own language, Learn lesson from authors write and life. (**PLO7**)

	Learning es (CLOs)	Course Con	tent	Teaching Learning Strategy	Assessment Strategy	
	the Bengali Punctuations, change, gy etc.	BengaliSpelling,Punctuations,voicechange,Terminology etc.		Lecture, Hand/Multimedia Demonstration	Assignment, Final Exam	
Identifythe right way to make a perfect CV, Show Cause Letter and Speech for various aspectsCV, Show Cause Lette Writing.Writing.Preparin Speech for various aspects.			Lecture, Hand/Multimedia Demonstration	Class Test, Final Exam		
Criticize all literary terms: Poems, Short Stories, Drama, Novel and dissertation.		Drama,	Lecture, Hand/Multimedia Demonstration	Class Test, Assignment, Final Exam		
Language through	the of Bengali Movement drama and war through	Bengali Language Movement through drama and Liberation war through novel.		Lecture, Hand/Multimedia Demonstration	Term paper/Presentation, Class Test, Final Exam	
value of ov	realize the vn language, sson from ite and life.	Learning lessons from authors writings and life.		Lecture, Hand/Multimedia Demonstration	Class Test, Assignment, Final Exam	
Course	Bangladesh	Course Code	GED 105	5 Credit Hour	2.0	
Title	Studies	Contact Hours/week	2.0	Prerequisite	N/A	
SynopsisThis course has been designed to acquaint the students develop their foundational knowledge about Bangladesh, especially about her past, politics, religions, society, economy, culture, music, customs, etc. Apart from learning, Bangladesh Studies also seeks to help students develop themselves as proud citizens of Bangladesh.						
Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to – CLO 1: Estimate the geographical, topographical and anthropological origin and traits of Bangladesh. (PLO3) CLO 2: Illustrate the historical development of Bangladesh from ancient age to British period.						

(PLO3)

CLO 3: Assess the political perspectives like the constitution of Bangladesh, (**PLO3**) CLO 4: Evaluate the economical and agricultural conditions of Bangladesh. (**PLO3**) CLO 5: Calculate the Societal, educational and Cultural settings of Bangladesh. (**PLO3**)

	Learning	Course Co	ntent	Teaching Learning	Assessment
	es (CLOs)	Course etc	ment	Strategy	Strategy
Estimate geographic topographic anthropolog and t Bangladesh	cal and gical origin raits of	GeographicalE Geography Topo climate and Antl origin and traits people and those indigenous grou	ography and nropology- of Bengalie e of various ps	Lecture, Hand/Multimedia Demonstration	Assignment, Final Exam
developme Bangladesh		Historical-(A) Prehistory and History of the Shashanka, the Pala and the Sena up to 1203. (B)Muslim conquest in Bengal: Sultanate and Mughal period in Bengal (1204-1757). (C)British Conquest of India (1757- 1947),		Lecture, Hand/Multimedia Demonstration	Class Test, Final Exam
Assess the perspective constitution Bangladesh	n of	Pakistani Interregnum-The Liberation War of Bangladesh (1947-1971). Political- The Constitution of Bangladesh. The functions of the Executive, Legislative and the Judiciary, Local Government Functions, etc.		Lecture, Hand/Multimedia Demonstration	Term paper/ Presentation, Class Test, Final Exam
Evaluate the economical and agricultural conditions of Bangladesh.		Economic- Economic growth in Bangladesh. Agricultural-the importance of Agriculture to Bangladesh: Environmental- Environmental Challenges.		Lecture, Hand/Multimedia Demonstration	Class Test, Assignment, Final Exam
Calculate the Societal, educational and Cultural settings of Bangladesh.		Societal-The service Sectors: Educational- primary, secondary and tertiary. Cultural-Culture of Bangladesh: (A) Its basic characteristics, urban rural cultural differences (B) Folk Culture of Bangladesh		Lecture, Hand/Multimedia Demonstration	Class Test, Assignment, Final Exam
Course		Course Code	GED 155	Credit Hour	2.0
Title	Sociology	Contact Hours/week	2.0	Prerequisite	N/A
Synopsis		nas been designed social interactions.		the scientific study	of human society,

CLO 1: Create sociological knowledge and skills that will enable to think critically and ingeniously about society and social issues. (PLO6, PLO10)

CLO 2: Analyze theoretical perspectives in sociology, and assess the conceptual differences among them. (PLO3)

CLO 3: Evaluate the impact of culture and socialization on individuals and groups. (PLO3, PLO6)

CLO 4: Develop knowledge on multiple types of social institutions and their evolution over time. (**PLO6**, **PLO10**)

CLO 5: Apply sociological knowledge to interpret current events. (PLO3, PLO10)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	
Create sociological knowledge and skills that will enable to think critically and ingeniously about society and social issues.	Introduction to Sociology. Practical Value/Uses of Sociology, Micro and Macro Sociology. Development of Sociology.	Lecture, Hand/Multimedia Demonstration, Group Work	Class Tests, Assignment, Final Exam
Analyze theoretical perspectives in sociology, and assess the conceptual differences among them.	Cotributions of Auguste Comte, Karl Marx and Max Weber to the Development of Sociology.	Lecture, Hand/Multimedia Demonstration, Group Work	Class Tests, Assignment, Final Exam
Evaluate the impact of culture and socialization on individuals and groups.	Culture and Civilization: Concept, Characteristics and Functions. Socialization: Concept, Types and Agencies of Socialization. Theories of Socialization.	Lecture, Hand/Multimedia Demonstration, Group Work	Class Tests, Assignment, Final Exam
Develop knowledge on multiple types of social institutions and their evolution over time.	SocialOrganization andSocialProblem. Family:Formand Functions ofFamily.SocialStratification.SocialProcesses.	Lecture, Hand/Multimedia Demonstration, Group Work	Class Tests, Assignment, Final Exam
Apply sociological knowledge to interpret current events.	Industrial Revolution, Capitalism and Socialism. Urbanization and City Development. Work and Economic Life. Climate Change and Global Risk.	Lecture, Hand/Multimedia Demonstration, Group Work	Class Tests, Assignment, Final Exam

Course	_	Course Code	GED 157	Credit Hour	2.0	
Title	Economics	Contact Hours/week	2.0	Prerequisite	N/A	
Synopsis	This course has been designed to discuss the major topics of importance and Relevance of Studying in Economics by the Social Worker, National Income, Labor and Productivity, Bangladesh Economy.					

CLO 1: Develop knowledge of the fundamental concept of economics both in micro and macro manner. (PLO10)

CLO 2: Compute basic mathematical term of economics. (PLO10)

CLO 3: Analyze basic market economy. (PLO10)

CLO 4: Design of the basics of micro and macro level of market economy. PLO10)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Develop knowledge of the fundamental concept of economics both in micro and macro manner.	Basics of economics: micro, macro. Water and Health, Community participation.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Compute basic mathematical term of economics.	Economic decision. Graphs. Theory and usefulness of theories. Opportunity Cost: production possibility schedule.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Analyze basic market economy.	Production. Demand, elasticity of demand. Supply, elasticity of supply. Capital: annual cost of capital, the stock marker. Cost: Marginal cost, average cost. Profit: normal profit and pure profit.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Design the basics of micro and macro level of market economy.	Economic Growth. Monopoly, oligopoly. Labor and productivity. Wage: theory of wages. Welfare economics: concept and application. Features of Bangladesh economy: Agriculture, Industry, Trade, Foreign Aid.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Course	Course Code		GED 159	Credit Hour	2.0	
Title	Government	Contact Hours/week	2.0	Prerequisite	N/A	
	This course ha	s been designed	to discuss tl	he major topics of	Governance,	
Bureaucracy, Issues of Accountability, Developm				nent Partners and the Agenda for		
Synopsis Good Governance, Globalization, Economic Reform and supply and					Demand Side	
	of Good Governance, The Role of Politics in Governance.					
Course I	Learning Outcon	nes (CLOs): Upor	n completion	of the course, the s	tudents will be	
able to -	able to –					
CLO 1: D	CLO 1: Develop knowledge of the theories of government and public policies. (PLO10)					
CLO 2: Analyze the system of public administration. (PLO10)						
CLO 3: E	CLO 3: Explain the existing social system in view of governance practice. (PLO10)					

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Develop knowledge of the theories of government and public policies.	Concept of governance and development. Paradigms of governance: Academic Paradigm - Western Model of Governance i.e. Classical Democracy, Protective Democracy, Developmental Democracy, Direct Democracy. Aid Agency Driven Paradigm: UNDP Model of Good Governance, World Bank Model of Good Governance,	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Analyze the system of public administration.	Characteristics and Notion of Good Governance. Governance Theories: Experience of Good Governance. Critical Definition of Globalization.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Explain the existing social system in view of governance practice.	Globalization Theory: Theory of Realism, Theory of Liberalism, Theory of Interdependence. Multidimensional features of Globalization. Globalization: Bangladesh Perspective.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Basic science

	Physical Optics, Waves &	Course Code	PHY 175	Credit Hour	3.0
Course Title	Oscillation, Heat & Thermodynamics	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis This course has been designed to discuss the major topics of waves and oscillation, Optical Physics, heat and thermodynamic issues, energy distribution of oscillatory system, situation under different condition (like damping), two-body oscillatory system, different measurable parameters of different pendulums, Different properties of light such as interference, diffraction, polarization with the devises and tools that are used to study the properties along with the experimental methods, thermal Physics with Kinetic theory of gases, different thermodynamic process, laws and functions with Mathematical orientations with Mathematical development.					
	earning Outcome	es (CLOs): Upon cor	npletion of the	e course, the s	tudents will be
able to – CLO 1: Explain Oscillatory system, behavior and properties of light, a gaseous and a thermo					
related system. (PLO1 , PLO2) CLO 2: Describe the steps take place in behaviors of light (interference, diffraction, polarization, aberration), and thermodynamic processes and respective laws separately. (PLO2 , PLO5)					

CLO 3: nearly similar properties of light, multi-body to single body oscillatory system. (PLO1, PLO02)

CLO 4: Design an experiment for optical event like interference and diffraction and etc. (PLO3, PLO11)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Explain Oscillatory system, behavior and properties of light, a gaseous and a thermo related system	Simple Harmonic Oscillation, Simple pendulum, Tensional pendulum, damped oscillation, forced oscillation, resonance, Spring-mass system, Interference, Diffraction, Polarization, Aberration, Kinetic theories of gases, Maxwell's functions	Lecture, Hand out	Class Tests, Assignment, Final Exam
Describe the steps take place in behaviors of light (interference, diffraction, polarization), and thermodynamic processes and respective laws separately	Interference, Diffraction; Zeroth, First, Second and Third laws of thermodynamic with different processes	Lecture, Hand out	Class Tests, Assignment, Final Exam
Compare nearly similar properties of light, multi- body to single body oscillatory system	spherical aberration, astigmatism, coma, distortion, curvature, chromatic aberration; reversible and irreversible processes; single body to two body oscillation	Lecture, Hand out	Class Tests, Assignment, Final Exam
Design an experiment for optical event like interference and diffraction and etc	Young's double slit experiment, Newton's rings, Diffraction by single slit, diffraction at double slit and N-slits	Lecture, Hand out	Class Tests, Assignment, Final Exam

Course	Structure of matter,	Course Code	PHY 177	Credit Hour	3.0
Title	Electricity, Magnetism & Modern Physics	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	Modern Physics Image: Construction of the second seco				
Course I	earning Outcom	es (CLOs): Upon cor	npletion of the	e course, the s	tudents will be

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Explain anon-relativistic motion and planetary system, preliminary level nuclear aspects and radioactive properties, general relativistic features, electric system and magnetic system (**PLO1, PLO2**)

CLO 2: Determine the physical parameters (observables) of a dynamic object both in nonrelativistic and relativistic motion separately. (**PLO1**, **PLO3**)

CLO 3: Compare between - classical to quantum system, different types of nuclear reactions, a relativistic to a non-relativistic system. (**PLO5**, **PLO7**)

CLO 4: Design an experime	ental process. (PLO2, PLO5)		
Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Explain non-relativistic motion and planetary system, preliminary level nuclear aspects and radioactive properties, general relativistic features, electric system and magnetic system	Linear and angular momentum for single and system of particles with conservation, nuclear constituents, radioactivity, uncertainty principle, postulates of quantum mechanics, postulates of relativity with transformation equations, electrical force, field, flux, potential, magnetic force, field, flux	Lecture, Hand out	Class Tests, Assignment, Final Exam
Determine the physical parameters (observables) of a dynamic object both in non-relativistic and relativistic motion separately	Momentum of object under linear and angular motion separately; velocity, time period, height of satellites, capacitance of capacitor, field and potential (change) of a charged system	Lecture, Hand out	Class Tests, Assignment, Final Exam
Compare between - classical to quantum system, different types of nuclear reactions, a relativistic to a non- relativistic system.	Galilean relativity, Lorentz transformation, introductory quantum mechanics, nuclear fission and nuclear fusion	Lecture, Hand out	Class Tests, Assignment, Final Exam
Design an experimental process	Compton effect, photoelectric effect	Lecture, Hand out	Class Tests, Assignment, Final Exam

		Course	PHY		
Course	Engineering		176	Credit Hour	1.5
Title	Physics Lab			D	
		Hours/week	3.0	Prerequisite	N/A
	This course	has been de	signed	to discuss the major topics of room	m condition
	(lighting) for	or focal leng	th dete	ermination experiment, supporting	tools (slide
	calipers, scr	ew gauge and	etc), de	etermination of the radius of curvature	e of a plano-
Synopsis	convex lens	by Newton's	ring m	ethod, determining rigidity modulus of	of a material
	and determine	nation of the s	spring o	constant and the effective mass of a lo	oaded spring
	and etc., err	or calculation	in the	experiment relating to line frequency l	oy Lissajous
	figures using	g an oscillosco	pe and	determination of frequency of a tuning	g fork.
Course I	earning Ou	tcomes (CLC	Ds): Uj	oon completion of the course, the stu	dents will be
able to -					
CLO 1: L	ist down the r	equirements fo	or doing	g an experiment. (PLO1, PLO11)	
CLO 2: R	elate the unde	rlying theory	to the e	xperiment. (PLO5, PLO2)	
CLO 3: C	alculate the e	xperimental va	alue. (P	PLO5, PLO4)	
CLO 4: J	udge the error	r made in the	experin	nent as percentage and therefore findi-	ng the causes
of error he	eld. (PLO3, P	LO7)			
Course	Learning	Course Cor	tont	Teaching Learning Strategy	Assessment
Outcom	$(\mathbf{CI} \mathbf{O} \mathbf{v})$	Course Cor	nent	Teaching Learning Strategy	<i>a</i>
List d	es (CLOS)				Strategy

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
List down the requirements for doing an experiment	Room condition (lighting) for focal length	Practical Experiment/ Lecture	Quiz, Reporting, Viva-voce

	determination experiment, supporting tools (slide calipers, screw gauge and etc)		
Relate the underlying theory to the experiment	Determination of the radius of curvature of a plano-convex lens by Newton's ring method	Practical Experiment/Demonstration/Lecture	Quiz, Reporting, Viva-voce, Assignment
Calculate the experimental value	Determining rigidity modulus of a material and determination of the spring constant and the effective mass of a loaded spring and etc.	Practical Experiment/Demonstration/Lecture	Quiz, Reporting, Viva-voce, Assignment
Judge the error made in the experiment as percentage and therefore finding the causes of error held	Error calculation in the experiment relating to line frequency by Lissajous figures using an oscilloscope and determination of frequency of a tuning fork	Practical Experiment/Demonstration/Lecture	Quiz, Reporting, Viva-voce, Assignment

Course	Engineering	Course Code	CHE 175	Credit Hour	3.0
Title	Chemistry	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis		U	5	or topics of Chemist ne field fundamental	2
Course I	earning Outco	mes (CLOs): Upor	n completion	of the course, the s	tudents will be
able to -					
CLO 1: C	omprehend the str	ructure of atoms and	the models a	ssociated with them.	(PLO1)
CLO 2: D (PLO1, P	1	hysico-chemical pro	perties of dif	fferent materials use	d in industries.
	Develop knowled tates. (PLO1)	lge of the formatio	n of solution	ns and their relatio	nship with the
CLO 4: A	pply the knowled	lge to find out ways	for optimum	reaction condition f	for higher yield
with short	er time. (PLO1)				
	Develop knowled able. (PLO1, PLC	U 1 1	f elements a	nd their properties	can derive the
Course	e Learning	Course Con	tent	Teaching Learning	Assessment

Outcomes (CLOs)		Strategy	Strategy
Comprehend the structure of atoms and the models associated with them.	Bohr's atom model, Heisenberg's uncertainty principle. Quantum Number and their significance. Electronic configurations of atoms.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Differentiate the physico-chemical properties of different materials used in industries.	Introduction and types of Chemical bonds. Physico- chemical properties of compounds based on chemical bonds. Valence bond theory molecular orbital theory, shape of molecules.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Develop knowledge of the formation of solutions and their relationship with the physical states.	Modern concepts of acids and base. Different types of solutions, Units of concentration. Properties of dilute solution.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Apply the knowledge to find out ways for optimum reaction condition for higher yield with shorter time.	Thermo chemistry and types of reaction. Thermo chemical laws. Ectrochemistry: voltaic cells, electrolytic cells. Colloids and colloidal solution. Chemical Equilibrium, Le Chatelier Principle. Ionic equilibria and pH concept.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Develop knowledge of periodicity of elements and their properties can derive the periodic table.	Reaction kinetics: rate of chemical reactions; order and molecularity of reactions. Different types of rate expressions, methods of determining rate and order. Effect of temperature on reaction rate and energy of activation.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Course	Engineering	Course Code	CHE 176	Credit Hour	1.5
Title	Chemistry Lab	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	oxidation-reduct	been designed to di ion titrations, pH t letermination of Ca a	itrations, dete	ermination of C	
able to -	8	nes (CLOs): Upon titrations. (PLO1, Pl	1	f the course, the	students will be
	11 .	Iron, and Calcium vo and Magnesium in w			
	e Learning nes (CLOs)	Course Con	tent	Teaching Learning Strategy	Assessment Strategy
Analyze	volumetric	Volumetric analysis	: acid-base	Lecture,	Assignments,

titrations.	titration, oxidation-reduction	Experimental	Report, Viva,
	titrations, pH titrations.	Demonstration	Final Quiz
Determine Copper, Iron, and Calcium volumetrically.	Determination of Cu, Fe and Ca volumetrically.	Lecture, Experimental Demonstration	Assignments, Report, Viva, Final Quiz
Determine Calcium and Magnesium in water.	Determination of Ca and Mg in water	Lecture, Experimental Demonstration	Assignments, Report, Viva, Final Quiz

		Mathe	<u>matics</u>		
	Differential	Course Code	MAT 153	Credit Hour	3.0
Course Title	Integral Calculus and Matrices	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	limit, continuit, theorem; expar Euler's theorem variables. Integr the method of function; multij algebra of mat matrices; solutio Cayley-Hamilto	y and differentiabilities of functions; u; tangent and normatical calculus: integratical ca	ity; successiv indeterminat al; maxima a ion by parts; on; definite ces: definition atrix; rank a ar equations;	us topics of differen ve differentiation ar te forms; partial di nd minima of functi standard integrals; in integrals; beta func n of different kinds nd elementary trans Eigen values and E	ad Leibnitz's fferentiation; ons of single ntegration by tion; gamma of matrices; formation of igen vectors;
able to – CLO 1: A equations CLO 2: exponenti bolic and CLO 3: systems of orthogona	Analyze the oper . (PLO1, PLO2) Analyze linear, ial, hyper- logarithmic funct Design computa of linear equation ality and diagonal	ation of composition quadratic, power, p tions and sketch their ational techniques an ns, matrix algebra,	n of function olynomial, a graphs. (PL nd algebraic	skills essential for s, eigenvalues and	ply algebraic rigonometric, the study of eigenvectors,
	e Learning nes (CLOs)	Course Con	tent	Teaching Learning Strategy	Assessment Strategy
Analyze to of compo- functions	the operation sition of apply equations.	Differential Differentiation of types of functions, of functions; Limit, Evaluati indeterminate form Hopitals rule Continuity differentiability;	expansion ion of	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
rational, t exponenti bolic and functions their grap	, power, al, algebraic, rigonometric, ial, hyper- logarithmic and sketch hs.	Maximum and values of functions variable	C	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
technique algebraic essential f of system equations	s and skills for the study s of linear , matrix vector spaces, es and	Inverse of matrix. elementary transfor matrices, Solution of of linear equations elimination method – Jordan Eliminatio Cayley-Hamilton Eigenvalues and eige	mation of of systems : Gaussian and Gauss on method. theorem.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

orthogonality and		
diagonalization.		

G	Differential	Course Code	MAT 155	Credit Hour	3.0
Course Title	Equations and Statistics	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	This course has equation: forma Statistics.	been designed to d tion of differential	liscuss variou equations, l	us topics of Ordinar Partial differential e	y differential quation, and
able to – CLO 1: So (PLO1, PI CLO 2: A electrical v CLO 3: D decisions (lve a variety of fi LO2) analyze certain p ribration) (PLO1, viscuss how varia PLO2)	rst order differential hysical problems (t PLO2) bility affects the da	equations se ank flow, co ata collected	of the course, the st lecting from a variet ompound interest, n and used for makin ring problem-solving	y of techniques nechanical and ng engineering
	e Learning nes (CLOs)	Course Con	tent	Teaching Learning Strategy	Assessment Strategy
order equations	variety of first differential selecting from f techniques	Degree and order differential equation nonlinear differenti Variable Separation Homogeneous Met differential equation	ns, Linear, al equation. n Method. hod. Exact	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
problems compound	ertain physical (tank flow, interest, l and electrical	Orthogonal T Linear Equation. Equation. Syst	Frajectories. Bernoulli's tem of ions. UC y Euler	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
affects the and used	ow variability data collected for making g decisions	Measures of centra arithmetic mean, mean, Harmoni Median, mode. M	Geometric c mean. leasures of d deviation,	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
		Statistics. Binomia and Normal distribu	· 1	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Course Coordinate Course Code MAT257 Credit Hour 3.0
--

Title	Geometry and Vector analysis	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	transformation Dimentional co points, section lines. Vector a subtraction of v point; scalar interpretation; tr and independer gradient, diverg	of co-ordinates, -ordinate geometry: formula, projectior malysis: scalars an vectors; multiplicati- and vector produ riple products and n nce of vectors; def	simplification system of co a, direction of d vectors, er on of vectors ct of two multiple produ- inition of lin point funct	nate geometry: cha n of equations of p-ordinates, distance cosines, equations of quality of vectors; s by scalars; positio vectors and their acts of vectors; linea act, surface and volu- tions; Gauss's theo	curves. 3- between two f planes and addition and n vector of a geometrical r dependence ume integral;

CLO 1: Analyze characteristics and properties of two and three dimensional geometric shapes and develop mathematical arguments. (PLO1, PLO2)

CLO 2: Design a physical interpretation of the gradient, divergence, curl and related concepts. (PLO2)

CLO 3: Apply the relationship between parallel and perpendicular lines. (PLO1)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Analyze characteristics and properties of two and three dimensional geometric shapes and develop mathematical arguments.	Co-ordinate Geometry: 2- Dimentional co-ordinate geometry: change of axes transformation of co-ordinates, simplification of equations of curves. 3-Dimentional co-ordinate geometry: system of co-ordinates, distance between two points, section formula, projection, direction cosines, equations of planes and lines.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Design a physical interpretation of the gradient, divergence, curl and related concepts.	Definition of line ,surface and volume integral; gradient, divergence and curl of point functions; Gauss's theorem, Stoke's theorem, Green's theorem and their applications	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Apply the characteristics of scalar and vector valued functions and master these in calculations	Scalars and vectors, equality of vectors; addition and subtraction of vectors; multiplication of vectors by scalars; position vector of a point; scalar and vector product of two vectors and their geometrical interpretation; triple products and multiple products of vectors; linear dependence and independence of vectors;	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

	Fourier	Course Code	MAT-259	Credit Hour	3.0					
Course Title	Analysis and Laplace Transformation	Contact Hours/week	3.0	Prerequisite	N/A					
 Fourier Analysis: Real and complex form of Fourier series; Finite transform; Fourier Integral; Fourier transforms and their uses in solving boundary value problems of wave equations. Laplace Transforms: Definition; Laplace transforms of some elementary functions; sufficient conditions for existence of Laplace transforms; Inverse Laplace transforms; Laplace transforms of derivatives. The unit step function; Periodic function; Some special theorems on Laplace transforms; Partial fraction; Solutions of differential equations by Laplace transforms; Evaluation of improper integrals. 										
	earning Outcon	nes (CLOs): Upon	completion	of the course, the stu	idents will be					
able to $-$	Familiarize the s	tudents with the co	uncent of Fou	urier transform & F	ourier series					
(PLO1)	a a a a a a a a a a a a a a a a a a a	indents with the ed			ourier series.					
	· 1			definition of a Lapla						
	the Laplace trai	nsform of the expor	nential, cosin	e and sine funct	ions. (PLO1,					
PLO2)										
CLO 3: Conduct Laplace transform of derivatives, integrals and general or complete solutions										
to linear C	DDEs. (PLO1, PL	.02)		r						
Course	Learning			Course Learning Assessment						

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Familiarize the students with the concept of Fourier transform & Fourier series.	Real and complex form of Fourier series Finite transform; Fourier Integral. Fourier transforms and their uses in solving boundary value problems of wave equations.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Analyze Laplace transform of a function from the definition of a Laplace transform and apply the Laplace transform of the exponential, cosine and sine functions.	Laplace Transforms: Definition; Laplace transforms of some elementary functions.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Conduct Laplace transform of derivatives, integrals and general or complete solutions to linear ODEs.	Laplace transforms of derivatives. Sufficient conditions for existence of Laplace transform; Inverse Laplace transforms.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Basic Engineering						
Course	Engineering	Course Code	CE 101	Credit Hour	3.0	
Title	Mechanics	Contact	3.0	Prerequisite	N/A	

		Hours/week						
	This course	has been designed to	disc	cuss	the major top	ics o	f engineering	
	mechanics such as — Coplanar and non-coplanar force systems, moments, analyses of two dimensional frames and trusses, friction, flexible chords, centroids							
Synopsis		as and volumes, moment						
• •	also intende	d to provide fundament	al ur	nderst	anding of the	princi	iples of plane	
		k and energy, impulse	and	mor	nentum as we	ell as	virtual work	
Commo		principle for rigid bodies. Learning Outcomes (CLOs): Upon successful completion of the course, the						
	vill be able to -		n suc	cessr	ul completion	of th	ie course, the	
		edge on the basic princip	les ai	nd ter	minology of str	uctur	al mechanics	
		non-coplanar forces and						
PLO5)								
		Frames and different typlse, momentum, moment						
		of 1D, 2D & 3D structura						
		sic working principles of				notio	n, friction and	
virtual wo	ork principle. (PLO1, PLŎĴ)			× 1			
	Learning	Course Content			hing Learning	A	ssessment	
	es (CLOs)	course content		-	Strategy		Strategy	
	nowledge on principles	Theories and examples	of					
	inology of	Coplanar concurr			_			
structural	0,	&non concurrent and n		Lecture,		Class Tests,		
by	identifying	coplanar force systems,		Hand/Multimedia Demonstration		Assignment, Final Exam		
	non-coplanar	moments in structural		БС	monstration		LAum	
structural	moments in	system.						
structurar	system.			(Classroom			
	D & 3D	Analysis of two dimensional frames and		instruction, Active learning,		Class Tests, Assignment, Final		
	nd different							
type of Tr	isses.	trusses.			Practical example		Exam	
				(Classroom			
Calculate	impulse,	Work and energy, imp	and energy, impulse		instruction,		Class Tests,	
momentur	n, moments	and momentum of static		Active learning,		Assignment, Final		
of inertia.		and kinetic system.	and kinetic system.		Practical		Exam	
				(example Classroom			
	roids of 1D,				instruction,		Assignment, Final	
2D & 3 element.	D structural	centroids of lines, are volumes and masses.	eas,	Practical		Exam		
element.					example			
Emplain	the basic	Theories and examples						
Explain working	the basic orinciples of	different types of cho horizontal and incli			Lecture.		Term	
	hords, plane	plane motion. Frict		Han	d/Multimedia		er/Presentation,	
motion, friction and		0 1	asic	De	emonstration	Cla	ass Test, Final Exam	
virtual wo	rk principle.	concept of Virtual w	ork				LAam	
		principle. Course Code		Έ	Credit Hou		3.0	
Course			-	Е 03	Credit Hot	II.	5.0	
Title	Surveyin	g Contact		.5	Prerequisit	e	N/A	
	1		1				1	
		Hours/week						
Synopsis		Hours/week sance survey; linear m ad contouring; calculatio						

and distances; curves and curve ranging, transition curve, vertical curves; astronomical surveying: definition, instruments, astronomical corrections, systems of time; Photogrammetry: introduction of terrestrial photography, aerial photography, reading of photo mosaic, scale; project surveying; errors in surveying; remote sensing; introduction to geographic information system (GIS) and global positioning system (GPS).

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Emphasize the basic principles and fundamental concept of surveying. (PLO1)

CLO 2: Demonstrate the use of basic surveying tools. (PLO11)

CLO 3: Quantify the error from a field survey, and the methods to adjust them. (PLO2, PLO5)

CLO 4: Apply drawing techniques in the development of a topographic map. (PLO11)

CLO 5: Familiar with geographic information system (GIS) and global positioning system (GPS). (PLO11)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Emphasize the basic principles and fundamental concept of surveying.	Fundamental concepts of Surveying. Definitions of various types of surveying, Calculation of Area, Measurement of Volume.	Lecture, Hand/Multimedia Demonstration, Practical Exercise.	Assignment, Viva, Quizzes
Demonstrate the use of basic surveying tools.	Chain Surveying, Compass, Level, Theodolite, Traverse Surveying, etc.	Lecture, Hand/Multimedia Demonstration	Assignment, Viva, Quizzes
Quantify the error from a field survey, and the methods to adjust them.	Accuracy and errors: Sources of errors, Kinds of error, Accuracy in Surveying	Lecture, Hand/Multimedia Demonstration	Assignment, Viva, Quizzes
Apply drawing techniques in the development of a topographic map.	Plain Table Surveying, Contouring , Photogrammetric surveying,	Lecture, Demonstration	Assignment, Viva, Quizzes
Be Familiar with geographic information system (GIS) and global positioning system (GPS).	Remote sensing; introduction to geographic information system (GIS) and global positioning system (GPS).	Lecture, Demonstration	Assignment, Viva, Quizzes

Course	Engineering	Course Code	CE 201	Credit Hour	3.0
Course Title	Materials	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	construction m concrete; concr fiber reinforced	aterials such as —a rete mix design; fer 1 polymer (FRP) co	ggregate, brid rocement , omposites. Th	or topics of civil eng ck, cement; sand, li wood, wood produc is course also cove nd strain condition;	me, mortars; ts; advanced rs stress and

of strain components of elastic, elasto-plastic and elasto-visco-plastic materials; time dependent strain response of these materials due to different types of loadings; mathematical and simple rheological modeling for prediction of creep behavior; corrosion and prevention of steel in RC structures.

Course Learning Outcomes (CLOs): Upon successful completion of the course, the students will be able to –

CLO 1: Develop knowledge how to use civil engineering materials for sustainable infrastructure (PLO1, PLO2, PLO5)

CLO 2: Design and use materials in engineering purpose. (PLO1, PLO3)

CLO 3: Develop knowledge of the stresses and the deformations of materials under loading. (PLO1)

CLO 4: Implement structural repair method with appropriate materials. (PLO1, PLO5) CLO 5: Understand steel corrosion and its prevention methods. (PLO5)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Develop knowledge how to use civil engineering materials for sustainable infrastructure.	Major engineering aspects of Aggregate, brick, cement; sand, lime, mortars; concrete; concrete mix design; ferrocement, wood, wood products; advanced fiber reinforced polymer (FRP) composites.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Design and use materials in engineering purpose.	Aggregate blending, mortar mix and concrete mix design for different categories of use.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Develop knowledge of the stresses and the deformations of materials under loading.	Stress and strain response of solid materials; plane stress and strain condition; identification of strain components of elastic, elasto-plastic and elasto-visco- plastic materials.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Implement structural repair method with appropriate materials.	Structural repairing of civil engineering structure (RCC structure) with ferrocement and FRP using contemporary technique.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Develop knowledge steel corrosion and its prevention methods	Corrosion and prevention of steel in RC structures, offshore structures and ground applications.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Course	Engineering	Course Code	CE 203	Credit Hour	3.0
Title	Geology and Geomorphology	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	properties of min earthquake and s faults; fold and for erosional land f stream terraces; a	nerals; mineraloids seismic map of Ba old type; domes; ba orms. Channel de illuvial flood plains	rocks; types ngladesh. Str sins; erosiona velopment; c ; deltas and a	rock forming miner of rocks, cycle of r uctural geology; fau Il process; quantitativ thannel widening; v Iluvial fans; channel geomorphology of B	rock change; ilts; types of ve analysis of valley shape; morphology;

CLO 1: Identify the most important rocks and minerals and interpret geological maps with an emphasis on making construction decisions.(**PLO1**, **PLO10**)

CLO 2: Determine the main processes that occur in rivers, and the means for observing them. (PLO1, PLO10)

CLO 3: Analyze and evaluate data and appropriately solve problems both technical and environmental. (**PLO1, PLO10**)

CLO 4: Assess some of the techniques for analysis of channel morphology and processes and understand stream response to natural and human induced environmental change. (PLO1, PLO10)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Identify the most important rocks and minerals and interpret geological maps with an emphasis on making construction decisions.	Minerals; identification of minerals, common rock forming minerals; physical properties of minerals; mineraloids rocks; types of rocks, cycle of rock change; earthquake and seismic map of Bangladesh.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Determine the main processes that occur in rivers, and the means for observing them.	Channel development; channel widening; valley shape; stream terraces; alluvial flood plains; deltas and alluvial fans; channel morphology; channel patterns and the river basin	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Analyze and evaluate data and appropriately solve problems both technical and environmental.	Structural geology; faults; types of faults; fold and fold type; domes; basins; erosional process; quantitative analysis of erosional land forms.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Assess some of the techniques for analysis of channel morphology and processes and understand stream response to natural and human induced environmental change.	Channel development; channel widening; valley shape; stream terraces; alluvial flood plains; deltas and alluvial fans; channel morphology; channel patterns and the river basin; geology and geomorphology of Bangladesh.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Course Title	Mechanics of	Course Code	CE 251	Credit Hour	3.0
	Solids I	Contact Hours/week	3.0	Prerequisite	CE 101
Synopsis	This course has been designed to discuss the major topics of solid mechanics such as — Concepts of stress and strain, constitutive relationships, deformations due to tension compression and temperature change beam statics; reactions axial force				

torsion, flexural and shear stresses in beams, shear centre as well as thin walled pressure vessels.				
Course Learning Outcomes (CLOs): Upon successful completion of the course, the students will be able to – CLO 1: Develop knowledge about the terminology and concepts of stress and strain and constitutive relationships. (PLO1) CLO 2: Estimate deformation. (PLO5) CLO 3: Draw axial force, shear force and bending moment diagram of beam. (PLO5) CLO 4: Analyze circular shaft and thin walled pressure vessel. (PLO5) CLO 5: Calculate flexural and shear stresses in beams and their implication. (PLO1, PLO5) Course Learning Course Content Outcomes (CLOs) Course Content				
Develop knowledge about the terminology and concepts of stress and strain and constitutive relationships.	Theories and basic concepts of stress and strain, constitutive relationships.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	
Estimate deformation.	Deformation calculation due to tension, compression and temperature change.	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam	
Draw axial force, shear force and bending moment diagram of beam.	Beam statics: reactions, axial force, shear force and bending moments, axial force, shear force and bending moment diagrams using method of section and summation approach.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	
Analyze circular shaft and thin walled pressure vessel.	Elastic analysis of circular shafts, solid noncircular and thin walled tubular members subjected to torsion	Classroom instruction, Active learning, Practical example	Assignment, Final Exam	
Calculate flexural and shear stresses in beams and their implication.	Flexural and shear stresses calculation of beams under different loading and support condition and their significance in solid mechanics.	Lecture, Hand/Multimedia Demonstration	Assignment, Final Exam	

Course	Mechanics of	Course Code	CE 253	Credit Hour	3.0
Title	Solids II	Contact Hours/week	3.0	Prerequisite	CE 251
Synopsis	Synopsis This course has been designed to discuss the major topics of solid mechanics such as — Symmetric and unsymmetrical bending of beams; stress transformation, failure criteria; beam deflection by direct integration and moment area method; buckling of columns; elastic strain energy and external work; cable and cable supported structures; bolted, riveted and welded joints.				
Course Learning Outcomes (CLOs): Upon successful completion of the course, the students will be able to – CLO 1: Develop knowledge of the basic principles of symmetric and unsymmetrical bending of beams. (PLO1)					

CLO 2: Use stress transformation method for failure analysis. (PLO1, PLO5)

CLO 3: Calculate beam deflection. (PLO5)

CLO 4: Analyze cable and cable supported structures and different types of joints. (PLO5)

CLO 5: Explain the basic working principles behind column buckling, elastic strain energy. (PLO1, PLO5)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Develop knowledge of the basic principles of symmetric and unsymmetrical bending of beams.	the basic principles of symmetric and Symmetric and unsymmetrical bending bending of beams		Class Tests, Assignment, Final Exam
Use stress transformation method for failure analysis.	Theory of stress transformation, failure criteria. Mohr's circle.	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam
Calculate beam deflection.	Beam Deflection calculation by direct integration, singularity function, conjugate beam and moment area method	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Analyze cable and cable supported structures and different types of joints. Calculation of cable and cable supported structures. Analysis of bolted, riveted and welded joints.		Classroom instruction, Active learning, Practical example	Assignment, Final Exam
Explain the basic working principles behind column buckling, elastic strain energy.	Theories and examples of column buckling. Basic concept of elastic strain energy.	Lecture, Hand/Multimedia Demonstration	Assignment, Final Exam

Course		Course	CE	Credit Hour	3.0
Title	Fluid	Code	241		
	Mechanics	Contact	3.0	Prerequisite	N/A
		Hours/week		_	
Synopsis	Development and	d scope of fluid	d mecha	anics, fluid propertie	es, fluid statics,
	kinematics of flu	id flow, fluid flo	ow conc	epts and basic equation	ions, Bernoulli's
	equation, energy	equation, mor	entum	equation and forces	in fluid flow.
	Similitude and dimensional analysis, steady incompressible flow in pressure				
	conduits, laminar	and turbulent flor	w, gener	al equation for fluid fi	riction, empirical
	equations for pipe flow, minor losses in pipe flow. Fluid measurement: Pilot tube,				
	orifice, mouthpiece, nozzle, venture meter weir. Pipe flow problems – pipes in				
	series and parallel, branching pipes, pipe networks.				
Course Loo	ming Outcomes	(CLOg) Linger	omplati	on of the course the	students will be

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Familiar with the terminology associated with fluid mechanics and principals of flow rates and velocity measurement. (PLO1)

CLO 2: Use fluid properties correctly to solve problems. (PLO1)

CLO 3: Solve (analytical and numerical) viscous flow problems. (PLO5)

CLO 4: Compute forces on bodies in fluid flows. (PLO5)

CLO 5: Analyze pipe flow network and losses in pipe flow. (PLO5, PLO11)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Be Familiar with the terminology associated with fluid mechanics.	Development and scope of fluid mechanics.	Lecture, Hand/Multimedia Demonstration, Practical Exercise.	Assignment, Viva, Quizzes
Use fluid properties correctly to solve problems.	Fluid properties, fluid statics, kinematics of fluid flow, fluid flow concepts and basic equations.	Lecture, Hand/Multimedia Demonstration	Assignment, Viva, Quizzes
Solve analytical and numerical viscous flow problems.	Similitude and dimensional analysis, steady incompressible flow in pressure conduits, laminar and turbulent flow, general equation for fluid friction.	Lecture, Hand/Multimedia Demonstration	Assignment, Viva, Quizzes
Compute forces on bodies in fluid flows.	Fluid measurement: Pilot tube, orifice, mouthpiece, nozzle, venture meter weir.	Lecture, Demonstration	Assignment, Viva, Quizzes
Analyze pipe flow network and losses in pipe flow.	Empirical equations for pipe flow, minor losses in pipe flow. Pipe flow problems – pipes in series and parallel, branching pipes, pipe networks.	Lecture, Demonstration	Assignment, Viva, Quizzes

Course	Fundamentals	Course Code	EEE 241	Credit Hour	3.0	
Title	of Electrical	Contact	3.0	Prerequisite	N/A	
	Engineering	Hours/week				
	This course has	been designed to d	liscuss the m	ajor topics of electr	ical units and	
Synopsis	standards, electr	s, electrical network and circuit solution, sinusoidal single phase RL				
	circuits, and alte	s, and alternating current.				
Course I	earning Outcor	nes (CLOs): Upon	completion	of the course, the s	tudents will be	
able to -						
CLO 1: Calculate electrical network and circuit solution. (PLO1)						
CLO 2: Develop knowledge on RLC circuits. (PLO1)						
CLO 3: D	evelop knowledge	on alternating curre	ent. (PLO1)			

Course Learning	Course Content	Teaching Learning	Assessment
Outcomes (CLOs)		Strategy	Strategy
Calculate electrical network and circuit solution.	Electrical units and standards, electrical network and circuit solution: series, parallel, node and mesh analysis, instantaneous current, voltage and power, effective current and voltage, average power.	Lecture, Hand Calculation	Class Tests, Assignment, Final Exam
Develop knowledge on RLC circuits.	Sinusoidal single phase RLC	Lecture,	Class Tests,
	circuits: phasor algebra,	Hand/Multimedia	Assignment,
	balanced three phase circuits.	Demonstration	Final Exam
Develop knowledge on alternating current. Alternating current; Instantaneous and rms values of current, voltage, power, average power, introduction to transformer and induction motors.		Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Course	Numerical	Course Code	CE 209	Credit Hour	2.0
Course Title	Methods and Analysis	Contact Hours/week	2.0	Prerequisite	N/A
Synopsis	techniques. So iteration, False simultaneous li diagonal and he for forward and Trapezoidal rule equations: Eule method; Least regression, fittin	lution of algebraic e Position metho near equations: Cr rizontal difference, l backward interpol e, Simpson's rule, V r's method, Picard's	c and trans d, Newton- ramer's rule differences of ation, Integr Weddle's rule s method, Ta nation of fur rigonometric		s: method of Solution of Interpolation: vton's formula ature formula, ury differential , Runge-Kutta

CLO 1: Demonstrate common numerical methods and how they are used to obtain approximate solutions to intractable mathematical problems. (PLO1)

CLO 2: Apply numerical methods to obtain approximate solutions to mathematical problems. (PLO1)

CLO 3: Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear

and nonlinear equations, and the solution of differential equations. (PLO5)

CLO 4: Analyze and evaluate the accuracy of common numerical methods. (PLO2)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Demonstrate common numerical methods	Solution of algebraic and transcendental equations: method of iteration, False Position method, Newton- Rhapson method;	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Apply numerical methods to obtain approximate solutions to mathematical problems	Solution of simultaneous linear equations, Iteration method, Interpolation: diagonal and horizontal difference, differences of a polynomial, Integration, Solution of ordinary differential equations.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Derive numerical methods for various mathematical operations	Iteration method, Interpolation: diagonal and horizontal difference, differences of a polynomial, Integration, Solution of ordinary differential equations.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Analyze and evaluate the accuracy of common numerical methods.	Least squares approximation of functions: linear and polynomi al regression, fitting exponential and trigonometric functions.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Course	Practical	Course Code	CE 106	Credit Hour	1.5
Title	Surveying	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis This course has been designed to discuss the topics of practical surveying, such as — Linear and angular measurement techniques; traverse surveying; leveling and contouring; curve setting; tacheometry; project surveying; modern surveying equipment and their applications.					
Course I	earning Out	comes (CLOs): Upo	n comp	letion of the course,	the students will be
able to -					
		ent concepts and meas			
		e ability to use mod			
		ve setting technique ar			
CLO 3: Develop concepts of tacheometry and its application. (PLO2, PLO9, PLO11)					
CLO 4: Apply the modern surveying concepts to practical projects. (PLO9, PLO11)					
	Learning es (CLOs)	Course Conter	ıt	Teaching Learning Strategy	Assessment Strategy

Outcomes	(CLOs)	Course	Content	Strategy	Strategy
Delineate concepts measurement technique surveying.	different and for	Linear an measurement for reconnais survey, plane house setting	techniques sance, chain	Lecture, Hand/ Multimedia Demonstration, field application	Assignments/Group work, Class tests, Final Quiz, Viva
Demonstrate	the	Ordinary	leveling,	Lecture,	Assignments/Group

ability to use modern surveying instruments to learn traversing, leveling, contouring curve setting technique.	reciprocal leveling, contouring, traversing, trigonometrically survey, traverse surveying; leveling and contouring; curve setting.	Hand/Multimedia Demonstration, field application	work, Class tests, Final Quiz, Viva
Develop concepts of tachometry and its application.	Tacheometry.	Lecture, Hand/Multimedia Demonstration, field application	Assignments/Group work, Class tests, Final Quiz, Viva
Apply the modern surveying concepts to practical projects.	Project surveying; modern surveying equipment and their applications.	Lecture, Hand/Multimedia Demonstration, field application	Assignments/Group work, Class tests, Final Quiz, Viva

Course	Computer Programming	Course Code	CSE 252	Credit Hour	1.5	
Title	Programming Lab	Contact Hours/week	3.0	Prerequisite	N/A	
Synopsis	 Synopsis This course has been designed to discuss basic concepts of programming, algorithm and flowchart. Number system; internal representation of data. Element of structured programming language: constants, variables, data types, operators, expression, Formatted input/output Functions, control statement, arrays, strings, functions, pointers and file management. Fundamental of object oriented programming (OOP) techniques: object design, classes, inheritance, data abstraction, data encapsulation, polymorphism, operator overloading and templates. Development of programs related to Civil Engineering. 					
students v CLO 1: D CLO 2: D CLO 3: 1 encapsula	Course Learning Outcomes (CLOs): Upon successful completion of the course, the students will be able to – CLO 1: Describe concepts of programming, algorithm and flow chart. (PLO2, PLO5, PLO11) CLO 2: Develop knowledge about functions, control statement, arrays. (PLO2, PLO5) CLO 3: Explain variables, functions and object oriented concept, such as polymorphism, encapsulation and inheritance. (PLO5) CLO 4: Evaluate Civil Engineering related problems using programming. (PLO2, PLO11)					
Cours	se Learning mes (CLOs)	Course Conter		Teaching Learning Strategy	Assessment Strategy	
Describe concepts of programming, algorithm and flow chart.		Introduction to C++, algorithms such as, quick sort, bubble sort		Classroom instruction, Active learning	Class Tests, Assignment, Final Exam	
Develop about fur statement	knowledge nctions, control , arrays.	programming constants, variables, d operators, expression, l input/output Functions statement, arrays,	Formatted	Classroom instruction, Active learning	Class Tests, Assignment, Final Exam	

Explain variables,			
functions and object oriented concept, such as polymorphism, encapsulation and inheritance.	Basic concepts of structured and object oriented programming, loops, conditional statements, operator overloading, templates.	Classroom instruction, Active learning	Class Tests, Assignment, Final Exam
	Solving problems related to real	Classroom	
Evaluate Civil	life problem such as, SFD and	instruction,	Class Tests,
Engineering related	BMD of beam, point load and	Active	Assignment,
problems using	UDL calculation, mechanics,	learning,	Final Exam
programming.	numerical solution of equation	Practical	
	of motion etc.	example	

Course Title	Civil Course Code		CE 102	Credit Hour	1.5
	Drawing	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	This course has been designed to discuss the major topics of lines and lettering, plane geometry, drawing of isometric view, developments of cube, pyramid, cone, cylinder, plan, elevations and sections of one storied and duplex building.				

CLO 1: Develop fundamental knowledge about plane geometry and drawing of linear and curved geometric figures. (PLO1)

CLO 2: Explain the pattern of views of different solid geometry. (PLO2)

CLO 3: Apply conceptual knowledge of different shapes of a building. (PLO1, PLO2)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Develop fundamental knowledge about plane geometry and drawing of linear and curved geometric figures.	Plane geometry: drawing of linear and curved geometric figures, e.g. pentagon, hexagon, octagon, ellipse, parabola, hyperbola.	Lecture, Calculation, Handouts	Assignments, Report, Viva, Final Quiz
Explain the pattern of views of different solid geometry.	Solid geometry: concept of isometric view and oblique view, theory of projections, drawing of isometric view of 3d objects such as cube, prism, pyramid, cone and cylinder, projections of cube, prism, cone, cylinder, developments of cube, pyramid, cone, cylinder.	Lecture, Calculation, Handouts	Assignments, Report, Viva, Final Quiz
Apply conceptual knowledge of different shapes of a building.	Plan, elevations and sections of one storied and duplex building.	Lecture, Calculation, Handouts	Assignments, Report, Viva, Final Quiz

~	<u> </u>	Course Code	CE 104	Credit Hour	1.5	
Course Title	Computer Aided Drafting	Contact	3.0	Prerequisite	N/A	
Synopsis	This course has been designed to discuss the major topics of advanced civil engineering drawing in Auto CAD- isometric view, plan and section of an ideal building, drawings of various types of shallow footings, shallow foundation layout, pile foundation and pile layout drawing, column layout and column drawing, beam drawing and beam layout, drawing of slab detailing, drawing of septic tank, drawing of roof top tank, box and arch culvert drawing, truss drawing and community overhead tank drawing.					
able to – CLO 1: E (PLO1, P CLO 2: D (PLO4, P CLO 3: C CAD. (PL CLO 4: D	Course Learning Outcomes (CLOs): Upon completion of the course, the students will be					
overhead CLO 5: A	tank. (PLO3, PI pply civil engine			ch culvert, truss and 05, PLO11)	,	
	e Learning nes (CLOs)	Course Con	itent	Teaching Learning Strategy	Assessment Strategy	
Explain various types of civil engineering drawings and use of Auto CAD software		Civil engineering drawing in Auto CAD- isometric view, plan and section of an ideal building, drawings of various types of shallow footings, pile foundation, column layout and drawing, beam drawing and layout, slab detailing, drawing of septic tank,		Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	
Depict various types of civil engineering drawings and use of Auto CAD software		Emphasis on civil engineering drawing technique in Auto CAD software		Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	
Compare civil engineering hand drawing with civil engineering drawing in Auto CAD		Comparison o engineering hand du civil engineering Auto CAD.	rawing with	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	
various t	ntroduction of ypes of civil 1g structures.	Detailing of variou shallow footing foundation, colun slab detailing, septi top tank, box and a truss and communi- tank in AutoCAD.	gs, pile nn, beam, c tank, roof rch culvert,	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	
	ril engineering n AutoCAD.	various types o	ication of f shallow foundation,	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	

column, beam, slab detailing, septic tank, roof top tank, box	
and arch culvert, truss and community overhead tank	

Course	Workshop	Course Code	CE 108	Credit Hour	1.5
Course Title	Sessional	Contact Hours/week	3.0	Prerequisite	N/A
	This course has been designed to discuss the topics of basic engineering such as				
Synopsis	Carpentry Shop (3/2 hours per week) Wood working tools, Machine Shop (3/4 hours per week) Kinds of tools. Welding Shop (3/4 hours per week) Methods of metal				

joints.

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Estimate and detail the procedure of estimating a wooden structure. (PLO2)

CLO2: Detect the defects of timber and their problems. (PLO2)

CLO3: Select the correct joint and make a specific job using Carpentry tools. (PLO11)

CLO4: Produce a regular shape of a given wood as instructed individually. (PLO2)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Estimate and describe the procedure of estimating a wooden structure.	Types of sawing; Common cuts in wood works;	Class room instruction, Active learning, Multimedia demonstrations	Assignments/Group work, Class tests, Final Quiz, Viva
Detect the defects of timber and their problems.	Defects of timber; Commercial forms of timber. Characteristics of good timber	Class room instruction, Active learning, Multimedia demonstrations	Assignments/Group work, Class tests, Final Quiz, Viva
Select the correct joint and make a specific job using Carpentry tools.	Types of joint, Use of fastening; Shop practice: Practical job, planning and estimating of a given job.	Class room instruction, Active learning, Multimedia demonstrations	Assignments/Group work, Class tests, Final Quiz, Viva
Produce a regular shape of a given wood as instructed individually.	Wood working tools; Wood working machine: Band saw, scroll saw, circular saw, jointer, thickness planer, disc sander, wood lathe.	Class room instruction, Active learning, Multimedia demonstrations	Assignments/Group work, Class tests, Final Quiz, Viva

Course	Details of	Course Code	CE 202	Credit Hour	1.5	
Title	Construction Lab	Contact Hours/week	3.0	Prerequisite	N/A	
Synopsis	 Synopsis This course has been designed to discuss the major topics of construction details, such as —Types of building, components of a building, design loads, framed structure and load bearing wall structure; foundations: shallow foundation and deep foundation, brick masonry: types of brick, bonds in brickwork, supervision of brickwork, brick laying tools, defects and strength on brick masonry, load bearing and non-load bearing walls, cavity walls, partition walls; lintels and arches, stairs: different types of stairs, floors: ground floors and upper floors; roofs and roof coverings; shoring; underpinning; scaffolding and formwork; plastering, pointing, painting; distempering and white washing; house plumbing: water supply and wastewater drainage. 					
Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to – CLO 1: Delineate different types of buildings, design loads, bearing capacity of soil, Standard Penetration Test. (PLO1) CLO 2: Depict different types of foundations, defects and strengths of masonry structures, load bearing and non-load bearing walls. (PLO4, PLO9) CLO 3: Develop concepts of formwork, plastering, pointing, painting, distempering, sound installation, house plumbing. (PLO9, PLO10) CLO 4: Apply the obtained knowledge to produce cement concrete for construction. (PLO9)						
	e Learning nes (CLOs)	Course Co	ntent	Teaching Learning Strategy	Assessment Strategy	
Delineate types or design lo capacity o	f buildings, bads, bearing	Types of components building. Desig Framed struct load bearing structure. capacity of soil. Penetration Test	ure and g wall Bearing Standard	Lecture, Hand/Multimedia Demonstration	Assignment, Multimedia Presentation, Final Exam	
Depict different types of foundations.		Foundations: foundation ar foundation, exploration. Su of brickwork laying tools, de structures, structures, structures in b Different types cavity walls, walls.	site pervision , brick fects and masonry typical rickwork. of walls-	Lecture, Hand/Multimedia Demonstration	Short Viva, Assignment, Final Exam	
Develop formwork, pointing, distemperi installation plumbing.	painting, ing, sound n, house	Discussion on of formwork, F Pointing, Distempering. plumbing, Cor of stairs and different types Roofs and roof of	Plastering, Painting, House nstruction arches, of stairs.	Lecture, Hand/Multimedia Demonstration	Oral Exam, Assignment, Final Exam	

		different typ	cement tio of of water- o on rength of concrete, bes of sed in e and the dmixtures	Lecture, Hand/Multimedia Demonstration	Term paper,/presentation, Final Exam
Course	Engineering	Course Code	CE 204	Credit Hour	1.5
Title	Materials Lab	Contact Hours/week	3.0	Prerequisite	N/A
	This course ha	s been designed	to discuss	the topics of laborat	tory experiments on

This course has been designed to discuss the topics of laboratory experiments on various building materials such as-fine aggregate, coarse aggregate, cement, bricks and also on cement mortar and structural concrete. Preparation and properties of concrete. The laboratory experiments includes test for specific gravity, unit weight, voids and bulking of aggregates; moisture content and absorption of coarse and fine aggregates; normal consistency and initial setting time of cement; direct compressive strengths of cement mortar; gradation of coarse and fine aggregates; normal design and testing of a concrete mix, sampling and testing of bricks for absorption, unit weight and compressive strength.

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Practice the material test (laboratory tests) according to ASTM requirements.(PLO2)

CLO 2: Select the appropriate materials for construction of RCC Buildings. (**PLO11**) CLO 3: Describe various engineering properties of the building materials. (**PLO2**, **PLO11**)

CLO 4: Prepare time schedule for casting of concrete mix.(PLO2 , PLO11)						
Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy			
Practice the material test (laboratory tests) according to ASTM requirements.	Laboratory test for specific gravity, unit weight, voids and bulking of aggregates; moisture content and absorption of coarse and fine aggregates; normal consistency and initial setting time of cement; direct compressive strengths of cement mortar; gradation of coarse and fine aggregates; concrete mixed design, design and testing of a concrete mix, sampling and testing of bricks for absorption, unit weight and compressive strength.	Lecture, Multimedia & Lab Demonstration	Assignments, Lab Report, Final Quiz, Viva			

Select the appropriate materials for construction of RCC Buildings.	Laboratory test for specific gravity, unit weight, voids and bulking of aggregates; moisture content and absorption of coarse and fine aggregates; normal consistency and initial setting time of cement; direct compressive strengths of cement mortar; gradation of coarse and fine aggregates.	Lecture, Multimedia & Lab Demonstration	Assignments, Lab Report, Final Quiz, Viva
Describe various engineering properties of the building materials.	Moisture content and absorption of coarse and fine aggregates; normal consistency and initial setting time of cement, testing of bricks	Lecture, Multimedia & Lab Demonstration	Assignments, Lab Report, Final Quiz, Viva
Prepare time schedule for casting of concrete mix.	Concrete mixed design, design and testing of a concrete mix,	Lecture, Multimedia & Lab Demonstration	Assignments, Lab Report, Final Quiz, Viva

Course	Ouentity Course Code		CE 206	Credit Hour	1.5	
Title	Quantity Surveying	Contact Hours/week	3.0	Prerequisite	N/A	
Synopsis	This course has been designed to be familiarizing with the estimation of building or construction material and also cost involved with any construction works. This					

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Select appropriate bidder of any project. (PLO11)

CLO 2: Estimate the costing of any structure as per PWD rate schedule. (PLO2, PLO11)

CLO 3: Evaluate the tenders based on financial proposal.(PLO11)

CLO 4: Prepare bill of quantity (BOQ) and proposal for any project as per PWD and other rate schedule (**PLO2**, **PLO11**)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Select appropriate bidder of any project.	Techniques for the estimation of building or construction material	Lecture, Multimedia and Lab Demonstration	Assignments, Lab Report, Final Quiz, Viva
Estimate the costing of any structure as per PWD rate schedule.	Cost estimation of various building component and other structures.	Lecture, Multimedia and Lab Demonstration	Assignments, Lab Report, Final Quiz, Viva
Evaluate the tenders based on financial proposal.	Estimation of building or construction material and also cost involved with any construction works.	Lecture, Multimedia and Lab Demonstration	Assignments, Lab Report, Final Quiz, Viva

Prepare bill of quantity	Estimation of building	or	Lecture,	Assignments,
(BOQ) and proposal for	construction material and	also	Multimedia	Lab Report,
any project as per PWD	cost involved with	any	and Lab	Final Quiz,
and other rate schedule.	construction works.		Demonstration	Viva

Comme	Stars strengt	Course Code	CE 208	Credit Hour	1.5	
	Structural Mechanics Lab	Contact Hours/week	3.0	Prerequisite	N/A	
Synopsis	ppsis This course has been designed to discuss the topics of tension, direct shear and impact tests of mild steel specimen, compression test of timber specimen, slender column test; static bending test; hardness test of metals; torsion test; helical spring tests; determination of shear center; study of structural models: truss, beam frame.					

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Develop fundamental concepts about properties of mild steel by direct shear, tension and impact test. (PLO2)

CLO 2: Compute stress and other material properties of different materials or different structural element. (**PLO2**, **PLO11**)

CLO 3: Analyze the behavior of beams under loading. (PLO2)

CLO 4: Apply the obtained knowledge to study structural models, truss and frames. (PLO11)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Develop fundamental concepts about properties of mild steel by direct shear, tension and impact test.	Introduction to different material properties. Behavior of mild steel and its properties. Tension test of mild steel. Direct shear test of mild steel. Impact test of metal specimens.	Lecture, Lab Manual	File Assessment, Final Exam
Compute stress and other material properties of different materials or different structural element.	Compression test of timber specimens. Hardness test of metals. Slender Column Test. Helical spring test.	Lecture, Lab Manual	Short Viva, File Assessment, Final Exam
Analyze the behavior of beams under loading.	Discussion on static bending test. Determination of shear center.	Lecture, Lab Manual	Oral Exam, File Assessment, Final Exam
Apply the obtained knowledge to study structural models, truss and frames.	Study of structural models. Truss, beam-column frame.	Lecture, Hand/Multimedia Demonstration	Term Paper, Group Presentation, Final Exam

Course	Fluid Mechanics	Course Code	CE 24	42	Credit Hour	1.5
Title	Lab	Contact Hours/week	3.0		Prerequisite	CE-241
Synopsis	through orifice	re. Proof of Bernoulli's Coefficient of veloc ow over V-notch. Flow	ity by c	coordi	nate method.	Flow through
Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to – CLO 1: Utilize basic measurement techniques of fluid mechanics.(PLO2) CLO 2: Discuss the differences among measurement techniques, their relevance and applications.(PLO2) CLO 3: Measure fluid pressure and relate it to flow velocity.(PLO2) CLO 4 : Demonstrate practical understanding of friction losses in internal flows(PLO2) CLO 5: Demonstrate the ability to write clear lab reports.(PLO11)						
	e Learning nes (CLOs)	Course Content			ing Learning strategy	Assessment Strategy
Utilize basic measurement techniques of fluid mechanics.		Introduction to Lab		Hand Demo	Lecture, //Multimedia nstration/Lab manual	Examination/ Class Test/ Written Assignment Report
	and	Centre of Pressure		Hand Demo	Lecture, /Multimedia nstration/Lab manual	Examination/ Class Test/ Written Assignment Report
	Measure fluid pressure and relate it to flow Measure fluid pressure and relate it to flow		gh]	Hand Demo	Lecture, /Multimedia nstration/Lab manual	Examination/ Class Test/Spot Test, Case Assignment Report
understand	rate practical ding of friction nternal flows	Flow Through an Orifice, Flow over a Sharp-Crested Rectangular weir		Hand Demo	Lecture, /Multimedia nstration/Lab manual	Examination/ Class Test/ Written Assignment Report
Demonstrate the ability to write clear lab reports. Flow Through an External Cylindrical Mouthpiece, Flow over a V-notch		re .	Hand Demo	Lecture, /Multimedia nstration/Lab manual	Examination/ Class Test/ Written Assignment Report	

Course	Engineering	Course Code	CE 304	Credit Hour	1.5
Title	Computation Lab	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	computation such application to nu linear equations, r fitting, numerical	been designed to as— Introduction to h merical analysis: bas non-linear equations, d differentiation, nume problems related to n	nigh-level comp ic matrix comp lifferential equat rical integration	utational progra butation, solvin tions, interpolation ti, application t	amming tools; ag systems of tion and curve o engineering

Course Learning Outcomes (CLOs): Upon successful completion of the course, the students will be able to –

CLO 1: Determine roots and solution of equations, solution of matrix related calculation. (PLO1, PLO2)

CLO 2: Explain variables, functions and object oriented concept, such as polymorphism, encapsulation and inheritance. (PLO2, PLO11)

CLO 3: Compare various mathematical functions using 2D subplots and 3D plots. (**PLO11**) CLO 4: Calculate statistical outcome of large datasets, such as, annual rainfall data, traffic speed study. (**PLO2**)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Determine roots and solution of equations, solution of matrix related calculation.	Introduction to high-level computational programming tools; application to numerical analysis: basic matrix computation, solving systems of linear equations, non-linear equations, differential equations, application to engineering problems	Classroom instruction, Active learning	Class Tests, Assignment, Final Exam
Explain variables, functions and object oriented concept, such as polymorphism, encapsulation and inheritance.	Basic concepts of structured and object oriented programming, loops, conditional statements.	Classroom instruction, Active learning	Class Tests, Assignment, Final Exam
Compare various mathematical functions using 2D subplots and 3D plots.	Interpolation and curve fitting, numerical differentiation, numerical integration	Classroom instruction, Active learning	Class Tests, Assignment, Final Exam
Calculate statistical outcome of large datasets, such as, annual rainfall data, traffic speed study.	Solving problems related to real life problem such as, rainfall study, traffic speed study, mechanics, numerical solution of equation of motion etc.	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam

Course	Remote Sensing	Course Code	CE 302	Credit Hour	1.5		
Title	and GIS Lab	Contact Hours/week	3.0	Prerequisite	N/A		
	Fundamentals of	GIS, Maps and M	Map Projection	ons, Scale and Co	oordinate system;		
	Different types of data used in a GIS, Vector Data Structures and Raster Data						
	Structures, Sources of GIS data, Understand the concept of spatial data; Main						
Synopsis	geographical data	formats, Data Acq	uisition: Digi	tizing, Editing; Veo	ctorize, Rasterize;		
	Managing Attribute Tables, Attribute Queries, Relational database; Spatial Analysis -						
	Raster spatial analysis, Single layer vector spatial analysis, Multi-layer Vector spatial						
	analysis, Attribut	es based analysis.	-	-	- •		
Course	Loorning Outcom	nes (CLOs): Upon	completion (of the course the st	udents will be able		

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Define the concepts and fundamentals of GIS. (PLO2, PLO11)

CLO 2: Describe Remote Sensing concepts, physical fundaments and components and adequately use vocabulary, terminology and nomenclature of the discipline. (PLO2, PLO11)

CLO 3: Practice Photo-interpretation for basic environmental and socioeconomic variables using photographs. (PLO2, PLO11)

CLO 4: Develop research-based analysis utilizing main-stream GIS technology to address a scientific topic of societal concern. (PLO2, PLO11)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Define the concepts and fundamentals of GIS.	Fundamentals of GIS, Maps and Map Projections, Scale and Coordinate system; Different types of data used in a GIS, Vector Data Structures and Raster Data Structures.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Describe Remote Sensing concepts, physical fundaments and adequately use vocabulary, terminology and nomenclature of the discipline.	Understand the concept of spatial data; Spatial Analysis - Raster spatial analysis, Single layer vector spatial analysis, Multi-layer Vector spatial analysis	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Practice Photo- interpretation for basic environmental and socioeconomic variables using photographs.	Spatial Analysis - Raster spatial analysis, Single layer vector spatial analysis, Multi-layer Vector spatial analysis, Attributes based analysis.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Develop research-based analysis utilizing main- stream GIS technology to address a scientific topic of societal concern.	Main geographical data formats, Data Acquisition: Digitizing, Editing; Vectorize, Rasterize; Managing Attribute Tables, Attribute Queries, Relational database;	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Structural Engineering

Course	Structural Analysis	Course Code	CE 351	Credit Hour	3.0
Title	and Design I	Contact	3.0	Prerequisite	N/A
The	and Design 1	Hours/week	5.0	rierequisite	IN/A
	This course has been designed to discuss the analysis of statically determinate				
Synopsis	trusses and three hinge arches, influence lines, moving loads on beams, frames an				ns, frames and
	trusses; cables and cable supported structures e.g. suspension bridges.				
Course I	Learning Outcome	s (CLOs): Upon co	mpletion of th	he course, the s	tudents will be
able to –					
CLO 1: Ability to analysis and design of statically determinate truss. (PLO1, PLO3)					
CLO 2: 4	CLO 2: Ability to draw quantitative influence line diagram for beams, frames and trusses.				

(PLO1, PLO3)

CLO 3: Ability to determine maximum reactions, maximum shear and maximum moment due to moving load across the structure. (PLO3, PLO5)

CLO 4: Design of cable	supported structures e	.g. suspension bridges.	(PLO3, PLO5)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Analyze and design statically determinate trusses, arches.	Introduction to statically determinate, indeterminate, stable, unstable trusses, analysis and design of truss members.	Lecture	Class Tests, Assignment, Final Exam
Draw quantitative influence line diagram for beams, frames and trusses	Draw qualitative influence line diagram by Muller Breslau's Method.	Lecture	Class Tests, Assignment, Final Exam
Determine maximum reactions, maximum shear and maximum moment due to moving load across the structure	Maximum reactions, maximum shear and maximum moment of any structure due to moving load.	Lecture	Class Tests, Assignment, Final Exam
Design cable supported structures e.g. suspension bridges.	Analysis of cable supported structures and design of suspension bridges.	Lecture	Class Tests, Assignment, Final Exam

Course	Structural Analysis and	Course Code	CE 353	Credit Hour	3.0
Title	Design - II	Contact Hours/week	3.0	Prerequisite	CE 351
Synopsis	review of the top subject is intende how to idealize a portal frame, mill method. This is for examples, of the	y deals with analysis of ics of lateral loads such d to provide students and analyze statically bent and multistoried billowed by detailed des analysis of the deflect method. This cour	ch as Wind 1 with a clear a indeterminat building fran scriptions and ion component	oad and earthquand thorough un e structure (i.e ne) using appro l demonstration nt of beam, trus	uake load. This nderstanding of .: braced truss, ximate analysis s through many sses and frames

understanding of how space truss analysis is performed. Finally, force method
(consistent deformation method) of structural analysis of indeterminate structure is
introduced to arm the students with the necessary tools to better appreciate the real
behavior of structures.

Course Learning Outcomes (CLOs): Upon successful completion of the course, the students will be able to –

CLO 1: Develop knowledge of type, sources of lateral loads and their estimation. (**PLO1, PLO5**) CLO 2: Develop knowledge on indeterminate structure and methods of analysis. (**PLO1**)

CLO 3: Analyze the indeterminate 1D, 2D and 3D structures using approximate method and exact method. (PLO3, PLO5)

CLO 4: Calculate the deflection of trusses, beams and frames by using unit load method (virtual work method). (**PLO3, PLO5**)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Develop knowledge of type, sources of lateral loads and their estimation	Analysis of Wind load and earthquake load	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam
Develop knowledge on indeterminate structure and methods of analysis	Idealization of indeterminate structure and methods of analysis.	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam
Analyze the indeterminate 1D, 2D and 3D structures using approximate method and exact method (Force method)	Analysis of structure (i.e.: braced truss, portal frame, mill bent, multistoried building frame and space truss) using approximate analysis method and exact method (force method).	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam
Calculate the deflection of trusses, beams and frames by using unit load method (virtual load method).	The analysis the deflection of beam, trusses and frames by virtual work method (unit load method).	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam

Course	Structural	Course Code	CE 451	Credit Hour	3.0
Title	Analysis and Design III	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	techniques to an by moment dist algorithms for in	been designed to ana alyze those. Analysis ribution, consistent plementing direct st minate beams and fra	s of statically deformation/ iffness meth	y indeterminate beam flexibility and stiffr	ns and frames ness methods;

Course Learning Outcomes (CLOs): Upon successful completion of the course, the students will be able to –

CLO 1: Develop knowledge on the fundamental concept of indeterminacy and influence line of indeterminate structures. (**PLO1**)

CLO 2: Compute indeterminacy and influence line of indeterminate structures. (PLO3)

CLO 3: Analyze indeterminate structures. (PLO3, PLO5))

CLO 4: Design computer application of indeterminate structures. (PLO3, PLO5) **Course Learning** Teaching Learning Assessment **Course Content Outcomes (CLOs)** Strategy Strategy Develop knowledge on Fundamental concepts of the fundamental concept Class Tests. Lecture. indeterminacy and influence of indeterminacy and Hand/Multimedia Assignment, line of indeterminate influence Demonstration Final Exam line of structures. indeterminate structures. Analysis of statically Classroom indeterminate beams and instruction, Class Tests, **Compute** indeterminacy frames by moment and influence line of Active learning. Assignment. distribution method indeterminate structures. Practical Final Exam Consistent example deformation/flexibility. Analysis statically of indeterminate beams and frames bv moment distribution method. Lecture. Class Tests. Analyze indeterminate Consistent Hand/Multimedia Assignment, structures. Demonstration Final Exam deformation/flexibility. Analysis of statically indeterminate beams and frames by stiffness method. Analysis of statically Active learning, indeterminate beams and Design and computer Multimedia Class Test. frames by slope deflection application Presentation. Assignment. of algorithms method. for indeterminate structures. Practical Final Exam implementing direct stiffness example method in computer

Course	Design of	Course Code	CE 355	Credit Hour	3.0
Title	Concrete	Contact	3.0	Prerequisite	N/A
Structures I Hours/week 5.0 Prerequisite	Trerequisite	IN/A			
	This course has b	een designed to disc	uss the majo	r topics of concrete s	tructures such
as — Fundamental behavior of reinforced concrete, introduction to streng					trength design
Sumanaia	and alternate design methods, flexural design of beams (singly reinforced, doubly				
Synopsis	reinforced, T-beam) using strength design method, shear, diagonal tension and				
	torsion of beams, bond and anchorage, design of one way slabs, design of two-way				
	edge supported sl	abs: using strip and	alternate met	thods.	
Course L	earning Outcom	es (CLOs): Upon s	uccessful co	mpletion of the cour	se, the students
will be able to –					
CLO 1: Develop knowledge on the fundamental behavior of reinforced concrete. (PLO1)					
CLO 2: D	esign different type	es of beams. (PLO3,	PLO5)		

CLO 3: Examine diagonal tension and torsion of beams. (PLO3)

CLO 4: Design one way slabs. (PLO3, PLO5) CLO 5: Explain the basic design principles of two-way edge supported slabs. (PLO1, PLO3)

Course Learning	Course Content	Teaching Learning	
Outcomes (CLOs)		Strategy	Strategy
Develop knowledge on the fundamental behavior of reinforced concrete.	Theories and examples of fundamental behavior of reinforced concrete, introduction to strength design and alternate design methods.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Design different types of beams.	Flexural design of beams (singly reinforced, doubly reinforced, T-beam) using strength design method. Shear Design. Bond and anchorage.	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam
Examine diagonal tension and torsion of beams.	Design of beam under diagonal tension and torsion.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Design one way slabs.	Structural Design and detailing of one way slabs.	Lecture, Hand/Multimedia Demonstration	Assignment, Final Exam
Explain the basic design principles of two-way edge supported slabs.	Basic Theories regarding of two-way edge supported slabs: using strip and alternate methods.	Lecture, Hand/Multimedia Demonstration	Term paper/ Presentation, Class Test, Final Exam

Course	Design of	Course Code	CE 357	Credit Hour	3.0
Title	Concrete Structures II	Contact Hours/week	3.0	Prerequisite	N/A
Structures II Hours/week Description This course has been designed to discuss the major topics of concrete structures such as — Design of column supported slabs, introduction to floor systems, design of columns Synopsisunder uniaxial and biaxial loading, introduction to floor systems, design of columns introduction to slender column, structural design of footings, pile caps, seismic detailing, shear wall; structural forms and basic introduction to pre-stressed concrete, analysis and preliminary design of pre-stressed beam sections. Course Learning Outcomes (CLOs): Upon successful completion of the course, the students will be able to – CLO 1: Analyze different types of floor systems and shear walls. (PLO1, PLO5) CLO 2: Design column supported slabs. (PLO3) CLO 3: Examine uniaxial and biaxial loading effect on columns. (PLO3) CLO 4: Design column, footing and pile cap. (PLO3, PLO5) CLO 5: Explain the basic working principles behind pre-stressed concrete through analysis of					
	beam sections.			1	6 5
	e Learning nes (CLOs)	Course Con	tent	Teaching Learning Strategy	Assessment Strategy
AnalyzedifferentTheories and examples of floor systems and differentLecture, Hand/MultimediaClass Tests, Assignment, Final					Class Tests, Assignment, Final Exam
Design supported	column	Design of supported slabs.	column	Classroom instruction, Active learning, Practical	Class Tests, Assignment, Final Exam

		example	
Examine uniaxial and biaxial loading effect on columns.	Design of columns under uniaxial and biaxial loading, introduction to slender column.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Design column, footing and pile cap.	Structural Design and detailing of column, footing and pile cap. Illustrating seismic detailing.	Lecture, Hand/Multimedia Demonstration	Assignment, Final Exam
Explain the basic working principles behind pre-stressed concrete through analysis of pre-stressed beam sections.	Basic Theories regarding pre-stressed concrete, analysis and preliminary design of pre-stressed beam sections.	Lecture, Hand/Multimedia Demonstration	Term paper/Presentation, Class Test, Final Exam

Course	Design of Steel	Course Code	CE 359	Credit Hour	3.0
Title	Structures	Contact Hours/week	3.0	Prerequisite	N/A
	 Synopsis Synopsis This course has been designed to discuss the major topics of steel structure design and construction such as —Behavioral principles and design of structural steel. This course also covers the design of tension members, bolted and welded connections, compression members, flexural members, design of beam-columns, design of moment connections and column bases. This course also intended to provide fundamental understanding in detailing of steel structures. All discussions are based on the current American Institute of Steel Construction (AISC) steel design specifications. 				
Course I	earning Outcome	s (CLOs): Upon succe	essful complet	ion of the cour	se, the students
will be ab					
	•	LRFD design philosop	hies of steel s	tructures and ha	ive concept on
	design. (PLO1)				
		on the behavior of steel			
		s, procedures and curr bers, beams, columns			
PLO5)	steel tension men	iders, deams, corumns,	, beam-colum	ins and connec	(1 LO3 ,
	esign simple steel st	ructures based on under	standing of b	ehavior & use o	f code
	s. (PLO3)				
*	· · · ·	ructures via detailing co	ncepts. (PLO	2, PLO3)	
	se Learning mes (CLOs)	Course Conte	ent	Teaching Learning Strategy	Assessment Strategy
philosophies of steel structures and have concept on limit state design. according to American Institute of Steel Construction (AISC). Instruction, Steel Construction (AISC). Active learning					Class Tests, Assignment, Final Exam
	U	Theories related to 1	U	Classroom	Class Tests,
the beha	avior of steel a	analysis of Steel	connection,	instruction,	Assignment,

structures	Tension member, compression member, flexural member, beam- column etc.	Active learning, Practical example	Final Exam
Apply the principles, procedures and current code requirements to the analysis and design of steel tension members, beams, columns, beam- columns and connections	Design and analysis of Steel connection, Tension member, compression member, flexural member, beam- column etc. according to AISC specification.	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam
Design simple steel structures based on understanding of behavior & use of codal provisions.	Design and analysis of structural steel members for combined load actions using AISC.	Classroom instruction, Active learning	Project, Assignment, Final Exam
Illustrate design of structures via detailing concepts	Introduction to detailing of individual steel members.	Classroom instruction, Active learning,	Project, Assignment, Final Exam

Course	Steel Structures	Course Code	CE 360	Credit Hour	1.5
Title	Design Lab	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	This course has been designed to discuss the topics of analysis of steel structures, e.g. truss, plate girder; design of members and joints of structures; use of software in analysis and design problems.				

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Analysis and design of truss and truss members CLO 2: Analysis and design of plate girder

CLO 3: Use software to analyze and design structure.

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Analyze and design truss and truss members	Introduction to truss, Dead load and live load calculation, design of truss member, design of joints	Class room instruction, Active learning, Multimedia demonstrations	Assignments/Group work, Class tests, Final Quiz, Viva
Analyze and design plate girder	Design of girder	Class room instruction, Active learning, Multimedia demonstrations	Assignments/Group work, Class tests, Final Quiz, Viva
Use software to analyze and design structure.	Use of design softwares	Class room instruction, Active learning, Multimedia demonstrations	Assignments/Group work, Class tests, Final Quiz, Viva

Course	Course Title Concrete Structures Design Lab I	Course Code	CE 356	Credit Hour	1.5
		Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	This course has been designed to analyze and design of Slab Bridge, simple girder bridge and a low rise building.				

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Analyze and design Slab Bridge.CLO 2: Analyze and design simple girder bridge.CLO 3: Analyze and design a low rise building.

CLO 5. Anaryze and design a low lise building.					
Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy		
Analyze and design Slab Bridge.	Determination of slab thickness, slab design, reinforcement layout	Class room instruction, Active learning, Multimedia demonstrations	Assignments/Group work, Class tests, Final Quiz, Viva		
Analyze and design simple girder bridge.	Design of girder	Class room instruction, Active learning, Multimedia demonstrations	Assignments/Group work, Class tests, Final Quiz, Viva		
Analyze and design a low rise building.	Design of slab, design of beam, design of wall, and footing.	Class room instruction, Active learning, Multimedia demonstrations	Assignments/Group work, Class tests, Final Quiz, Viva		

Course	Concrete Structu	res Course Code	CE 452	Credit Hour	1.5
Title	Design Lab II	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis		been designed to discus of multistoried RCC fran			
Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to – CLO 1: Apply modern concept of concrete design for civil engineering practices. (PLO11, PLO3,PLO9) CLO 2: Analyze and design a multistoried RCC frame residential building according to updated BNBC code. (PLO1, PLO9) CLO 3: Analyze various components of PC girder bridges. (PLO1, PLO3,PLO9) CLO 4: Design simple span PC girder bridge. (PLO3, PLO9)					
	se Learning mes (CLOs)	Course Content		Teaching Learning Strategy	Assessment Strategy
concrete	odern concept of design for civil ng practices.	Introduction to modern technologies, techniques and practices of concrete structures.		Lecture	Assignment, Viva Final Exam
	to updated	Calculate the gravity loads and lateral loads of a multistoried RCC frame residential building, design of building components.		Lecture	Assignment, Viva, Final Exam
Analyze componen bridges.	various tts of PC girder	Analysis of PC girder bridges		Lecture	Assignment, Viva, Final Exam
Design sigirder brid	imple span PC lge.	Design of simple spa bridge	n PC girder	Lecture	Assignment, Viva, Final Exam

Environmental Engineering

Course Water Supply		Course Code	CE 311	Credit Hour	3.0
Title	Engineering	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis		0		e major topics of ater quality and wate	11.4

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Explain basic elements of water supply system. (PLO1, PLO2)

CLO 2: Depict water quality of both surface and ground water. (PLO4, PLO8)

CLO 3: Compare different water purification techniques. (PLO4, PLO10)

CLO 4: Design water treatment units and water safety plans.(PLO3, PLO10)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Explain basic elements of water supply system.	Introduction to water supply engineering: water demands, water supply sources, Surface water collection and transportation.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Depict water quality of both surface and ground water.	Water quality requirements.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Compare different water purification techniques.	Water treatment - plain sedimentation, coagulation, flocculation, filtration, disinfection; miscellaneous treatment methods.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Design water treatment units and water safety plans.	Low cost treatment methods for rural communities. Water safety plans.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Course	Wastewater and	Course Code	CE 313	Credit Hour	4.0
Title	Sanitation Engineering	Contact Hours/week	4.0	Prerequisite	N/A
Synopsis	sanitation and wastewater coll maintenance of plumbing syste wastewater treat sludge treatment	wastewater engined ection systems; hy sanitary sewer and em; microbiology ment and disposal;	ering such draulics of storm draina of wastewa treatment an tion and heal	e major topics of as —estimation of sewer; design, com age system; sewer a ater; wastewater of d disposal of indust th; low cost sanitation	f wastewater; astruction and appurtenances; characteristics; trial effluents;

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Explain sewage system, sewage hydraulics, pipe materials, waste collection system. (PLO1, PLO2)

CLO 2: Depict microbiology of sewage and wastewater. (PLO4, PLO8)

CLO 3: Compare chemical properties of industrial, domestic and storm sewage. (PLO4, PLO10) CLO 4: Design septic tank, activated sludge process and trickling filter as per Bangladesh standard. (PLO3, PLO10)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Explain sewage system, sewage hydraulics, pipe materials, waste collection system.	Sewage system. Sewage hydraulics and pipe materials. Load on pipes, Design of waste water collection system. Appurtenances, plumbing systems.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Depict microbiology of sewage and wastewater.	Microbiology of sewage and waste water. Wastewater characteristics; preparatory, primary treatment methods. Secondary treatment methods and disposal.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Compare chemical properties of industrial, domestic and storm sewage.	Storm water drainage system. Design of storm water collection system. Treatment and disposal of industrial effluents.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Design septic tank, activated sludge process and trickling filter as per Bangladesh standard.	Design of septic tank system. Activated sludge process. Trickling filter design.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Apply low cost techniques to provide sanitation for rural community.	Sanitation for low income communities – on-site sanitation systems for rural communities. Low cost small bore sewerage for small townships. Rural sanitation in Bangladesh.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

CLO 5: Apply low cost techniques to provide sanitation for rural community. (PLO5, PLO11)

Course	Environmental	Course Code	CE 314	Credit Hour	1.5	
Title	Engineering	Contact	3.0	Prerequisite	N/A	
Thee	Lab I Hours/week		5.0	Trerequisite	10/11	
	This course h	has been designed to	discuss	the major topic	s of water quality	
Synopsis	requirements,	water and waste water	samplin	g techniques, phy	sical, chemical and	
	biological tests of water and wastewater.					
Course Lea	Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able					
to –	-	-	-			
CLO 1: Dev	elop knowledge	about water sampling t	echniqu	es. (PLO1, PLO2	2)	
CLO 2: Dete	ermine physical,	chemical, biological pr	roperties	of water. (PLO2	, PLO10)	
CLO 3: Analyze solid waste for treatment and disposal. (PLO3)						
Comment	Teaching					
Course Learning Outcomes (CLOs)		Course Content	t	Learning	Assessment	
Outcome	s (CLUS)			Strategy	Strategy	

Develop knowledge about water sampling techniques.	Water quality requirements, water and waste water sampling techniques, sample preservation.	Lecture, Practical/ Experimental Demonstration	Assignments, Report, Viva, Final Quiz
Determine physical, chemical, biological properties of water.	Physical, chemical and biological tests of water and wastewater; breakpoint chlorination, alum coagulation.	Lecture, Practical/ Experimental Demonstration	Assignments, Report, Viva, Final Quiz
Analyze solid waste for treatment and disposal.	Sampling and laboratory analysis of solid waste.	Lecture, Practical/ Experimental Demonstration	Assignments, Report, Viva, Final Quiz

Geotechnical Engineering

Course	Principles of Soil	Course Code	CE 321	Credit Hour	4.0				
Title	Mechanics	Contact Hours/week	4.0	Prerequisite	CE 203				
Synopsis	Engineering such a soil structure and f soil compaction; p stress-strain-streng	been designed to di as—formation, type ar abric; index properties rinciples of total and e th characteristics of so h pressure; stress distri	nd identification of soils; engin ffective stresse ils; compressib	n of soils; soil eering classific s; permeability	composition; ation of soils; and seepage;				
Course I	earning Outcome	(CLOs). Upon succe	essful completi	ion of the cour	Course Learning Outcomes (CLOs): Upon successful completion of the course, the students				

Course Learning Outcomes (CLOs): Upon successful completion of the course, the students will be able to –

CLO 1: Determine different types of soil and their composition including soil classification by USCS method. (**PLO1**)

CLO 2: Explain permeability, seepage, consolidation and shear strength behavior of soil. (PLO1, PLO3)

CLO 3: Calculate total and effective stress, Mohr's circle and stress due to surface load. (PLO1, PLO5)

CLO 4: Calculate lateral earth pressure using Rankine's method, Culmann's graphical method. (PLO5)

CLO 5: Evaluate slope stability using modified Bishop's method and ordinary method of slice. (PLO3, PLO5)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Determine different types of soil and their composition including soil classification by USCS method.	Introduction to geotechnical engineering, Formation, type and identification of soils, Soil composition; soil structure and fabric	Classroom instruction, Active learning	Class Tests, Assignment, Final Exam
Explain permeability, seepage, consolidation and shear strength behavior of soil.	Permeability of soil, field permeability tests, California bearing ratio, field compaction and equipment, Soil compaction, compaction force, compaction behavior of sand	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam
Calculate total and effective stress, Mohr's circle and stress due to surface load	Principles of total and effective stresses, stress at a point, Mohr's circle, geostatic stress, stress due to surface load	Classroom instruction, Active learning	Class Tests, Assignment, Final Exam
Calculate lateral earth pressure using Rankine's method, Culmann's graphical method	Lateral earth pressure, earth pressure at rest, Rankine's earth pressure theory, Culmann's graphical method.	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam
Evaluate slope stability using modified Bishop's method and ordinary method of slice	Slope stability, causes of slope failure, Slope protection measures	Classroom instruction, Active learning	Class Tests, Assignment, Final Exam
Course Foundation	Course Code CE 323	Credit	3.0

Title	Engineering			Hour	
		Contact Hours/week		Prerequisite	N/A
Synopsis	This course has been designed to discuss the major topics of sub-soil investigation techniques; geotechnical aspects of building foundations; bearing capacity of shallow and deep foundations; settlement and distortion of foundations; design and construction of footings, rafts and piles. This course also covers the slope stability analyses of natural and man-made earth slope.				
Course Learning Outcomes (CLOs): Upon successful completion of the course, the students will be able to – CLO 1: Comprehend and utilize the geotechnical literature to establish the frame work for foundation design. (PLO1, PLO5) CLO 2: Implement the site investigation program. (PLO1, PLO5) CLO 3: Evaluate the soil- structure behavior by obtaining necessary design parameters. (PLO5) CLO 4: Design a shallow foundation for a structure. (PLO3) CLO 5: Evaluate the earth slope stability. (PLO5)					
	rning Outcomes (LOs)	Course Content		Teaching Learning Strategy	Assessment Strategy
geotechnical	1 and utilize the literature to frame work for esign.	Geotechnical aspects building foundations.	of	Classroom instruction, Active learning	Class Tests, Assignment, Final Exam
Implement investigation	the site program.	Sub-soil investigat techniques.	ion	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam
behavior	e soil- structure by obtaining sign parameters	Techniques of Analy and interpretation of s soil investigat information.	ub-	Classroom instruction, Active learning	Class Tests, Assignment, Final Exam
Design a shafor a structure	allow foundation e.	Shallow foundation: footing, combined footi strap footing and raft/ foundation.	ng,	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam
Evaluate considered foundation de	the factors in deep esign	Deep foundation: pile, j and caisson etc.	pier	Classroom instruction, Active learning	Class Tests, Assignment, Final Exam

Course	Geotechnical	Course Code	CE 324	Credit Hour	1.5
Title	Engineering Lab I	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis This course has been designed to discuss the major topics of field identification tests; grain size analysis by sieve and hydrometer, specific gravity test, Atterberg					

			a 11	
	ermeability tests, stress-strain-str	0		
	npression test, compaction test, relati	ve density test, direct	shear tests,	
consolidation tests. Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able				
0	mes (CLOs): Upon completion of the	he course, the student	s will be able	
to –				
	pes of geotechnical engineering test.			
1 6	e on the behavior of various types of erties of fine grained and coarse grain	. , , ,		
			J10)	
Club 4: Design various typ	es of soil related diagram. (PLO3, P		Aggaggement	
Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Strategy	
Outcomes (CLOS)		Strategy	Class	
Explain various types of		Lecture,	Tests.	
geotechnical engineering	Principle topics of field	Hand/Multimedia	Quiz,	
test.	identification tests.	Demonstration	Final	
test.		Demonstration	Exam	
			Class	
Develop knowledge on		Lecture,	Tests.	
the behavior of various	Grain size analysis by sieve and	Hand/Multimedia	Quiz,	
types of soil.	hydrometer.	Demonstration	Final	
• 1			Exam	
			Class	
Compare soil properties	Minimum water content for LL,	Lecture,	Tests,	
of fine grained and	PL and stress-strain-strength	Hand/Multimedia	Quiz,	
coarse grained soil.	characteristics of soil.	Demonstration	Final	
			Exam	
	Design of soil system by		Class	
Design various types of	compaction test, relative density	Lecture,	Tests,	
soil related diagram.	test, direct shear tests, Hand/Multime	Hand/Multimedia	Quiz,	
son rolaton diagrani.	consolidation tests.	Demonstration	Final	
			Exam	

Transportation Engineering

	Transportation	Course Code	CE 331	Credit Hour	3.0
Course Title	Planning and Traffic Engineering	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	functions; transp development, tr intelligent transp concepts, scope economic activiti safety and accide	een designed to discu ortation systems, fun ansportation modes, ortation system: com and hierarchy, proce es, land use- transpor ent analysis. Transpo ansport demand and	ctional compo public tran ponents and a ss, goals and t interaction, ortation in Ba	onents, factors in asportation, emer pplications; transp objectives, inven travel demand for ngladesh: transpor	transportation ging modes; port planning: itories, socio- ecasting; road rtation modes

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Illustrate various methods to calculate the trip distribution number of highway. (PLO1, PLO5, PLO8)

CLO 2: Calculate super elevation, horizontal curve, vertical curve etc. of highway. (PLO5)

CLO 3: Discuss the factors influencing road vehicle performance characteristics and design. (PLO3)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Illustrate various methods to calculate the trip distribution number of highway.	Elements of Transportation System and Trip Distribution	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Calculate super elevation, horizontal curve, vertical curve etc. of highway.	Geometric design of highways: design controls and criteria, cross sectional elements, alignment, sight distance, intersection and interchange layouts, planning and design of bicycle and pedestrian facilities	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Discuss the factors influencing road vehicle performance characteristics and design.	Traffic Control Devices and O- D study. traffic engineering: fundamentals of traffic engineering, vehicle and traffic characteristics, traffic control devices and systems, traffic studies, planning and design of parking facilities, roadway lighting;	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Design the highway lighting system and signal design for various conditions.	Street Lighting Design and Traffic Signal Design	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

CLO 4: **Design** the highway lighting system and traffic signaling for various conditions. (PLO3)

	Pavement	Course Code	CE 333	Credit Hour	4.0
Course Title	Design and Railway Engineering	Contact Hours/week	4.0	Prerequisite	N/A
Synopsis	This course has been designed to discuss the major topics of Transportation Engineering such as— Railways: general requirements, alignment, permanent way, station and yards, signaling, points and crossings, maintenance Highway materials;				
Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able					
to – CLO 1: Explain various components of railways (PLO1)					

ain various components of railways (PLO1)

CLO 2: Apply different techniques for maintenance of flexible and rigid pavements (PLO1, PLO3)

CLO 3: Calculate super elevation, horizontal curve, vertical curve and resistance of railway track.(PLO3, PLO5)

CLO 4: Calculate mix proportion of aggregate and bitumen. (PLO5) CLO 5: Design flexible and rigid pavement using AASHTO, CBR, IRC, RHD methods. (PLO5)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Explain various components of railways	Introduction to Railway Engineering, Gauges and Permanent Way, sleeper, ballast, subgrade, fastening, switch, crossing, signaling and wears and failures in Rails.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Apply different techniques for maintenance of flexible and rigid pavements	Flexible pavements - specification of materials, construction method and field control checks for various types of flexible pavements. Rigid pavements - specification and method of construction, construction of various types of joints	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Calculate super elevation, horizontal curve, vertical curve and resistance of railway track.	Fastenings, Geometric Design - Alignment of Track, Horizontal Curve &, Super elevation, Speeds on Track, Transition Curve, Vertical Curve & Gradients	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Calculate mix proportion of aggregate and bitumen	Marshall mix design, standards, characteristics curves, test related problems, Hveem mix design	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Design flexible and rigid pavement using AASHTO, CBR, IRC, RHD methods.	CBR method, principle, advantages and application, testing as per BS, AASHTO, and asphalt institute, problems on above. AASHTO design chart, design of longitudinal, contraction and expansion joints, and design of slabs.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Course	Transportation	Course Code	CE 334	Credit Hour	1.5	
Title	Engineering	Contact	3.0	Prerequisite	N/A	
The	Lab I	Hours/week	5.0	Trerequisite	IN/A	
	This course has been designed to discuss the major topics of Transportation					
	Engineering such	n as— Tests of coa	rse aggregate	s used as road base	and sub base	
Synopsis	opsis materials, Tests of bituminous materials, tests on subgrade, sub-base and bas					
	materials; bitum	ninous mix design:	; roadway c	apacity analysis; a	application of	
	analytical, simula	ation and statistical p	backages.			
Course L	earning Outcom	es (CLOs): Upon c	ompletion of	the course, the stude	nts will be able	
to –						
CLO 1: D	CLO 1: Determine different physical properties of coarse aggregates as per British Standard (BS)					
(PLO2)						
CLO 2: E	CLO 2: Explain various physical properties of bituminous materials (PLO2 , PLO11)					

CLO 3: Calculate shape and size properties of coarse aggregates as per BS standard. (PLO2, PLO5)

CLO 4: Apply different field techniques to count traffic volume and capacity of signalized intersection. (**PLO11**)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Determine different physical properties of coarse aggregates as per British Standard (BS)	Tests on aggregate impact value, aggregate crushing value, ten percent fines value.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Explain various physical properties of bituminous materials	Laboratory tests on specific gravity, solubility, flash and fire point, ductility, penetration value as per ASTM and AASHTO standard for road construction	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Calculate shape and size properties of coarse aggregates as per BS standard.	Tests on flakiness index, elongation index and angularity number	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Apply different field techniques to count traffic volume and capacity of signalized intersection	Manual and video camera methods to count traffic volume and capacity of signalized intersection using HCM 1994 and Road note 34 method	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Water Resources Engineering

Huter Resources Engineering					
Course	Open Channel	Course Code	CE 341	Credit Hour	4.0
Course Title	Flow	Contact Hours/week	4.0	Prerequisite	CE 241
Synopsis	equation, speci principles of flo Manning equati flow; momentu	low and its classificat fic energy and tran ow measurement and ons, estimation of resi m equation and spe ually varied flow.	nsition probl devices; con istance coeffi	ems; critical flow cept of uniform flow cients and computati	and control; w, Chezy and on of uniform
Course L	earning Outcon	nes (CLOs): Upon c	ompletion of	the course, the stude	ents will be able
to –					
CLO 1: 5	Solve open chan	nel flow problems th	nrough the se	election and applica	ation of proper
equations	.(PLO5)				
CLO 2: I	Explain physical	characteristics of hy	draulic jump	s surges and critica	l, uniform and
gradually	y varied flow.(PLO1)				
CLO 3: A	O 3: Apply mathematical relationships for hydraulic jumps, surges and critical, uniform and				
0 5	varied flows.(PL	,			
CLO 4: D	esign open chann	el by determining the	ir cross sectio	ons.(PLO5)	
Cours	e Learning	a a		Teaching Learning	Assessment

Course Learning	Course Content	Teaching Learning	
Outcomes (CLOs)	esuise content	Strategy	Strategy
Solve open channel flow	Introduction to Open Channel	Lecture,	Class Tests,

problems through the selection and application of proper equations.	Flow, Kinds of Open Channel, Types of Open Channel ,Flow Problems solve /calculation, Computation of Critical Depth, Analytical method, Trial and Error Method, Numerical Methods, Uniform Flow (Establishment of Uniform Flow, Uniform flow formulas & Computation)	Hand/Multimedia Demonstration	Assignment, Final Exam
Explain physical characteristics of hydraulic jumps surges and critical, uniform and gradually varied flow	Continuity, Energy & Momentum Equation, Specific energy and specific energy curve, Effects of Viscosity and Gravity Velocity distribution in open channel flow, Velocity distribution coefficients, Hydrostatic pressure distribution, Pressure distribution in curvilinear flow	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Apply mathematical relationships for hydraulic jumps, surges and critical, uniform and gradually varied flows.	Channel Section with Composite roughness, Compound cross-section, Computation of flood Discharge. Hydraulic Jump (Definition, Types of Jump, Problem)	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Design open channel by determining their cross sections.	Problems, Stilling Basin, Channel Design (Introduction, Alluvial Channel: Regime Approach).	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

	Hydrology,	Course Code	CE 345	Credit Hour	3.0
Course Title	Irrigation Engineering and Flood Management	l Contact Hours/week	3.0	Prerequisite	N/A
Synopsis Synopsis					
		nes (CLOs): Upon c		the course, the stude	nts will be able
movemen	t of water in the e		-		that affect the
		ream flow measurem ge about the basic re			rious irrigation
technique CLO 4: E	s, requirements of	the crops. (PLO1) systems for canal ir	•	-	c -
	e Learning	Course Con	tent	Teaching Learning	
Develop about vari	ogic cycle that e movement of	Hydrological precipitation, mean ra a drainage Basin. E transpiration, overland flow, meas infiltration.	vaporation, infiltration,	Strategy Lecture, Hand/Multimedia Demonstration	Strategy Class Tests, Assignment, Final Exam
	e various Stream surements e.		ph, Flood, discharge	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
about the requireme and vario	basic ents of irrigation us irrigation es, requirements	Water requirements Irrigation requirements and delta, efficiencies. Des conventional and methods of irrigation of arid lands.	ents, duty Irrigation sign of modern	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
systems for irrigation of design	istribution or canal and the basics of unlined and gation canals	Distribution systems irrigation, canal capa losses, alignment Alluvial and Nor canals, design o channels, laceys thec of Non- alluvial design of lined canals transport: regime drainage system.	acity, canal of canals. n alluvial f alluvial ory, Design channels, s. Sediment	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

		Course Code	CE 342	Credit Hour	1.5	
Course Title	Open Channel Flow Lab	Contact Hours/week	<u>3.0</u>	Prerequisite	N/A	
Synopsis	Broad crested weir, Sluice gate, Venturi flume, Parshal flume, Cut-Throat flume, Hydraulic Jump, Velocity distribution profile, Manning's roughness coefficient, Specific force and Specific energy.					
Course L		nes (CLOs): Upon com	pletion of the	e course, the stude	nts will be able	
CLO 2: M	to – CLO 1: Determine the state of flow in open channel. (PLO2) CLO 2: Measure open channel discharge by using different flow measuring devices. (PLO11) CLO 3: Observe Hydraulic jump and develop relationship among different parameters of jump.					
Cours	e Learning mes (CLOs)	Course Conte		Teaching Learning Strategy	Assessment Strategy	
	ne the state of ben channel.	Determination of State Open Channel.	of Flow in	Lecture, Hand Demonstration, Practical Exercise.	Assignment, Viva, Quizzes	
discharge	open channel by using flow measuring	Flow through a Vent Broad crested weir Flume, Sluice Gate, et	, Parshall	Lecture, Hand Demonstration, Practical Exercise.	Assignment, Viva, Quizzes	
and devel among	Hydraulic jump lop relationship different s of jump.	Create a hydraulic horizontal rectangula and development of relationship betweer length, and efficiency of a jump.	r channel f different heights,	Lecture, Hand Demonstration, Practical Exercise.	Assignment, Viva, Quizzes	
Develop specific specific fo	generalized energy and prce curve.	Development of O Specific Energy An Force Curves.	Generalized d Specific	Lecture, Hand Demonstration, Practical Exercise.	Assignment, Viva, Quizzes	

Civil Engineering Practices

Course	Professional Practices,	Course Code	CE 493	Credit Hour	3.0
Title	Communication and Ethics	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	life cycle; type of procurement of we	een designed to discuss of contracts; procurem orks, goods and servic lity; insurances; tender	ent regulation es and their a	s and law; dopplication; con	ocuments for tract risk and

procedure; measures for reducing fiduciary risks. Introduction to communication
concepts, modes of communication, methods of effective communication; writing
reports; oral presentation of reports; writing proposals; preparing effective business
messages; conducting meetings; strategies for effective speaking and successful inter
personal communication; job application process, interviews and follow-ups.
Introduction to the code of ethics for Professionals and Legislation for Professionals.

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Explain various components of projects and project management. (PLO1, PLO7)

CLO 2: Apply different techniques for maintenance of a successful project. (PLO3, PLO5)

CLO 3: Practice the professional ethics in civil engineering job. (PLO8, PLO11)

CLO 4: Manage the three parties of project successfully with performing their demands. (PLO4, PLO5, PLO7, PLO10, PLO11)

CLO 5. Define tender and tender system. (FLO1, FLO7, FLO3)				
Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy	
Explain various components of projects and project management.	Project, The project cycle and Project proposal	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	
Applydifferenttechniquesformaintenanceofasuccessful project.	Contractual provisions and Specifications	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	
Practice the professional ethics in civil engineering job.	Professional ethics in engineering and ABET & BAETE.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	
Manage the three parties of project successfully with performing their demands.	Interpretation of literature, documents and Communicating	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	
Define tender and tender system.	Project management and Tender	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	

CLO 5: Define tender and tender system. (PLO1, PLO7, PLO8)

Course Code CE 494 Cre	dit Hour 1.5
------------------------	--------------

	Project Planning	Course Code	CE 491	Credit Hour	3.0
Course Title	and Construction Management	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	construction saf planning and eva of return; bene scheduling, PER Principles of ma equipment, site control, safety, Demand foreca	as been designed to discuss the major topics of project management, safety, project evaluation, project planning and scheduling. Project evaluation; feasibility reports; cash flows, payback period, internal rate nefit-cost ratio; cost-benefit analysis case studies; Planning and ERT, CPM; resource scheduling; linear programming and application, nanagement; construction management: management of materials and te management, contracts and specifications, inspection and quality y, economy. Conflict management; human resource management casting; inventory control; stores management; procurement; legal ruction; environmental regulations.			
		nes (CLOs): Upon c		the course, the stude	nts will be able
CLO 2: D CLO 3: C CLO 4: D	epict project cost, ompare and evaluatesign of construct	ental project manage annual rate of return ate the project. (PLO ion safety module. (I mming in product de	, benefit. (PL 4) PLO3, PLO6	.04, PLO8, PLO9)	
	e Learning nes (CLOs)	Course Con	tent	Teaching Learning Strategy	Assessment Strategy
organizati Depict	Processional Practices and ta Communication ent, on, authority. project cost, ate of return,	Principles of management; construction management: principles, project organization, methods and practices, technology, management of materials and equipment, Project planning and evaluation; feasibility reports; cash flows, payback period, internal rate of return; benefit-cost ratio; cost- benefit analysis case studies		Lecture, Hand/Multimedia Demonstration Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam Class Tests, Assignment, Final Exam
Compare the project		Planning and schedu CPM; resource sched		Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Design of safety mod	of construction dule.	Contracts and specifications, inspection and quality control, safety, economy. Conflict management; psychology in administration: human factors in management; human resource management. Demand forecasting; inventory control; stores management; procurement; legal issues in construction;		Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Apply programm design.	linear	Resource scheduling; linear programming and application		Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
		Contact Hours/week	3.0	Prerequisite	N/A

I		Sessional				
Synopsis This course has been designed to discuss the application of communication of communication of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a controlled class room environment of the second provides in a control provid						nication theory
	Synopsis	and professional p	ractice approaches in	a controlled cl	ass room enviro	nment.

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Communicate effectively in professional career. (PLO4, PLO6, PLO7, PLO9) CLO 2: Develop report writing skills. (PLO2, PLO6, PLO7)

CLO 3: Develop knowledge about different case study. (PLO4, PLO7, PLO9)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Communicate effectively in professional career.	Application of communication theory and professional practice approaches.	Lecture, Presentation	Assignments, Presentation, Viva, Final Quiz
Develop report writing skills.	Role playing, preparing small reports and proposals.	Lecture, Presentation, Report writing	Assignments, Presentation, Viva, Final Quiz
Develop knowledge about different case study.	Case study analysis, class room presentations and individual reports.	Lecture, Presentation, Case study	Assignments, Presentation, Viva, Final Quiz

	Socio –	Course Code	CE 495	Credit Hour	3.0
Course Title	Economic Aspects of Development Projects	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	Aspects of Dev development and development, hu human poverty Bangladesh; con development pr distribution of b	elopment Projects 1 economic growth; man development in and human pove ncepts of sustainal ojects; industries a	such as — socio-econor idex; gender i erty index; ble developm ind other ec	ajor topics of Socie Economics and so- mic indicators; conc related human develo poverty reduction nent; MDGs. Chan onomic benefits; in mic impact assessm	cial structure; sept of human opment index; strategies in racteristics of nequalities in
	Learning Outcon	nes (CLOs): Upon	completion	of the course, the s	tudents will be
able to –	1 1 (1. 6.1 .			. 1

CLO 1: Develop an understanding of the emerging concept of socio-economic aspect and sustainable development. (**PLO3, PLO8**)

CLO 2: Identify need assessment process to determine the needs and problems regarding productivity, land loss, land use, fisheries and aquaculture, deforestation etc. in a community. (PLO8, PLO10)

CLO 3: Evaluate the actual conditions on the basis of health & nutrition, inequalities in distribution of benefits and losses by different types of survey method. (**PLO3, PLO8**) CLO 4: Assess project results of a project by impact assessment approaches.(**PLO8, PLO10**)

Course Learning	and of a project by impact assessme	Teaching Learning	
Outcomes (CLOs)	Course Content	Strategy	Strategy
Develop an understanding of the emerging concept of socio-economic aspect and sustainable development.	Economics and social structure; development and economic growth;	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Identify need assessment process to determine the needs and problems regarding productivity, land loss, land use, fisheries and aquaculture, deforestation etc. in a community.	Characteristics of development projects; human interest related aspects; population displacement; resettlement and rehabilitation strategy; Productivity; land loss, land use and land ownership patterns; fisheries and aquaculture; deforestation and a forestation;	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Evaluate the actual conditions on the basis of health & nutrition, inequalities in distribution of benefits and losses by different types of survey method.	communication, commerce, industries and other economic benefits; water supply, sanitation, health and nutrition; inequalities in distribution of benefits and losses;	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Assess project results of a project by impact assessment approaches.	Socio-economic impact assessment approach; socio- economic survey; case studies.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Course	Business and	Course Code	CE 498	Credit Hour	3.0
Course Title	Career Development	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	communication, market manage environment; wi human resource recruitment, dev employee comp and market anal choosing brand introduction to	human resource r ment. Techniques of management: sour velopment and moti ensation and benefits lysis, marketing stra elements, brand exte	nanagement of effective modern bus ce of manp ivating the s; basic mark tegies and u ension and i gement, bas	as on techniques as well as differe communication in iness letters, memos ower, methods of s workforce, appraisa keting management, use of marketing too ts advantages and d ic production deci rocess.	nt aspect of professional and reports; selection and procedures, segmentation ols; branding, isadvantages;
	0	mes (CLOs): Upo	n successfu	l completion of the	e course, the
	will be able to –	1 6 1	1	ective communication	1

CLO 1: Develop knowledge on the fundamental concept effective communication, human resource management and market management. (**PLO4**, **PLO6**)

CLO 2: Explain techniques of modern business letters, memos and reports. (PLO7, PLO9, PLO10)

CLO 3: Analyze different aspect of market management and human resource management. (PLO10)

PLO10)	CLO 4: Design and evalu	ate different market segment, appr	raisal procedures. (PI	LO6,
	PLO10)			

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Develop knowledge on the fundamental concept effective communication, human resource management and market management.	Introduction to effective communication. Techniques of effective communication in professional environment. introduction to operations management, basic production decisions of an organization	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Explain techniques of modern business letters, memos and reports.	Writing techniques of modern business letters, memos and reports.	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam
Analyze different aspect of market management and human resource management.	Human resource management: source of manpower. Methods of selection and recruitment. Basic marketing management. control within operations process	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Design and evaluate different market segment, appraisal procedures.	egment, appraisal tools Branding choosing		Class Test, Assignment, Final Exam

<u>Major + Minor Optional Courses</u> <u>Structural Engineering</u>

a	Introduction t		CE 453	Credit Hour	2.0	
Course Title	Finite Elemen	t Contact	2.0	Proroquisito	N/A	
Thue	Method	Hours/week		Prerequisite		
Synopsis	This course has been designed to discuss the basic concepts of Finite Element as well as computer application of its. Introduction to finite element method as applied to stress analysis problems; basic equations in elasticity, matrix displacement formulation, element shapes, nodes, nodal unknowns and coordinate system, shape functions, strain displacement matrix, methods for assembling stiffness equations e.g. direct approach, Galerkin's method, virtual work method, principle of minimum potential energy; introduction to isoparametric formulation; discritization of a structure and mesh refinement, one dimensional stress- deformation and two dimensional plane stress and plane strain analysis of stress deformation problems; numerical integration and computer application.					
Course						
Course Learning Outcomes (CLOs): Upon successful completion of the course, the students will be able to – CLO 1: Develop knowledge on the fundamental concept of finite element method. (PLO1) CLO 2: Compute basic equations in elasticity, element shapes, nodes, nodal unknowns. (PLO1) CLO 3: Analyze the discritization of a structure and mesh refinement and plane strain analysis of stress deformation problems. (PLO3) CLO 4: Design the structure using it by formulating equation and computer application. (PLO1, PLO3)						
	e Learning nes (CLOs)	Course Conten	ıt	Teaching Learning Strategy	Assessment Strategy	
Develop knowledge on the fundamental concept of finite element method.		Introduction to finite method as applied analysis problems.	e element to stress	Lecture,	Class Tests, Assignment, Final Exam	
Compute equations	basic in elasticity, hapes, nodes,	Basic equations in Matrix displacement fo element shapes, nod unknowns and coordina	es, nodal		Class Tests, Assignment, Final Exam	
strain ana deformati	the ion of a and mesh it and plane lysis of stress on problems.	Discritization of a stru- mesh refinement functions, strain dis matrix. Methods for a stiffness equations e. approach, galerkin's Virtual work Introduction to isoo formulation. One di stress-deformation a dimensional plane st plane strain analysis deformation problems. Numerical integratio	Inclure and Shape Inclure and Ssembling g. Direct method. parametric mensional nd two tress and of stress	Lecture, Hand/Multimedia Demonstration Active learning,	Class Tests, Assignment, Final Exam	
using it by	y formulating and computer	computer application.		Multimedia Presentation, Practical example	Class Test, Assignment, Final Exam	
Carrow	Due sture s 1	Commer Coll	CE		2.0	
Course Prestressed Course Code CE 455 Credit 2.0						

Title	Concrete			Hour	
		Contact Hours/week	2.0	Prerequisite	N/A
Synopsis Hours/week - Synopsis This course has been designed to provide students with a clear and thorough understanding about the major topics of prestressed concrete such as —concepts of prestressing; materials; anchorage systems; loss of prestress; analysis of sections for flexure, shear, bond and bearing; analysis of end block and composite sections; beam deflections; cable layout; partial prestress. This course also covers the Design of prestressed concrete beams for simple and continuous spans; ideas about use of AASHTO – PCI sections for standard spans; design considerations for prestressed concrete pipes, piles, poles and railway sleepers. Course Learning Outcomes (CLOs): Upon successful completion of the course, the students					
Course L	earning Outcomes	(CLOs): Upon succes	ssful completio	on of the course	e, the students
will be ab		-1			

CLO 1: Develop knowledge about concept of prestressing and the behavior of concrete structures. (PLO1, PLO3)

CLO 2: Determine losses of prestress in prestressed concrete structures. (PLO1, PLO5)

CLO 3: Determine the deflection and camber of prestressed concrete members. (**PLO1**, **PLO5**) CLO 4: Apply the provisions of ACI 318 code to the design and detail of prestressed concrete structures for flexure, shear, bearing and torsion. (**PLO1**, **PLO5**)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Develop knowledge about the concept of prestressing and the behavior of concrete structures.	concepts of prestressing; materials; anchorage systems;	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam
Determine losses of prestress in prestressed concrete structures	Loss of prestress: types and analysis methods	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam
Determine the deflection and camber of prestressed concrete members.	beam deflections; cable layout;	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam
Apply the provisions of ACI 318 code to the design of prestressed concrete structures for flexure, shear, bearing and torsion.	analysis of sections for flexure, shear, bond and bearing; analysis of end block and composite sections	Classroom instruction, Active learning, Practical example	Class Tests, Assignment, Final Exam

Course	Design of	Course Code	CE 457	Credit Hour	2.0
Title	Concrete	Contact	2.0	Prerequisite	N/A

l Í		Hours/week						
				e major topics of ana				
c ·	torsion; desig	gn of one way and	joist slabs with or w	vithout beam on the				
Synopsis	column line;	design and detailing	ng of latera	l load resisting com	ponents: shear wall,			
		phragm etc.; design			,			
Course L					e students will be able			
Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –								
	nalvze structur	es for torsion. (PL	01 PL.05)					
		and two way joist s		3)				
		load resisting comp						
		joints. (PLO3, PL		suuciule. (FLO5)				
		joints. (PLO5, PL	05)	m 1. m	4			
	Learning	Course Cor	ntent	Teaching Learning				
Outcom	es (CLOs)			Strategy	Strategy			
		Introduction to c						
			nt-Venant					
		Principle of	torsion.					
		Determination	of shear					
		stress due to t	orsion in	Lecture.				
Analyze s	structures for	different types	of cross-	Hand/Multimedia	Assignment, Final Exam			
torsion.		sections. Determ	ination of	Demonstration				
		torsional rigidity	. Design	Demonstration				
		concept and	Code					
		provisions for	designing					
		structures for	torsion.					
		failure modes.	,					
		Concepts of one	way and					
		two way slabs						
Design of	ne way and	without beams		Lecture,	Class Test, Final			
two way jo		column line. I		Hand/Multimedia	Exam			
eno naj je	5150 514051	such slabs for		Demonstration	Linum			
		shear, check for d						
		Importance of la						
		bearing element						
Framina	lateral load	of lateral load		Lecture,	Class Test,			
resisting	components	elements: shear		Hand/Multimedia	Assignment, Final			
of a struct		cores, diaphragm		Demonstration	Exam			
of a structu	ure.			Demonstration	Exam			
		provisions. Spec	ial design					
		considerations.						
		General ide						
		components of			T			
		joints. Classific		Lecture,	Term			
Design dif	fferent joints.	joints. Behavior		Hand/Multimedia	paper/Presentation,			
_ congin un		Design and de		Demonstration	Class Test, Final			
		joints according			Exam			
		provisions.	Repair					
		techniques of joir	its.					

Course	Dynamics of	Course Code	CE 459	Credit	2.0

Title	Structures			Hour				
		Contact Hours/week	2.0	Prerequisite	N/A			
Synopsis	This course has been designed to discuss the major topics of single degree of freedom system, formulation of equation of motion, free vibration response, response to harmonic, impulse and general dynamic loading, and vibration analysis by Rayleigh's method, response spectra, and two degrees of freedom system.							
Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –								
CLO 1: Develop knowledge on one and two degree of freedom systems. (PLO1) CLO 2: Formulate equation of motion. (PLO1, PLO3) CLO 3: Analyze structural vibration. (PLO3, PLO5)								
Course Learning Outcomes (CLOs)		Course Content		Teaching Learning Strategy	Assessment Strategy			
Develop knowledge on one and two degree of freedom systems.		Single degree of freedom system, two degrees of freedom system.		Lecture, Hand Calculation	Class Tests, Assignment, Final Exam			
Formulate motion.	equation of	Formulation of equation		Lecture, Hand Calculation	Class Tests, Assignment, Final Exam			
Analyze vibration.	structural	Free vibration respon to harmonic, impulse dynamic loading, ar analysis by Rayleigh response spectra.	and general d vibration	Lecture, Hand Calculation	Class Tests, Assignment, Final Exam			

	Introduction to	Course Code	CE 461	Credit Hour	2.0			
Course Title	Steel Concrete Composite Structures	Contact Hours/week	2.0	Prerequisite	N/A			
Synopsis	This course has been designed to discuss the basic concepts of steel concrete composite structures as well as design of composite column and floor system. Introduction to composite structures; advantages of composite construction; interaction between steel and concrete, shear connectors, elastic analysis of composite beams, beam-column connections, behavior of different types of composite columns, axial load capacity and interaction diagrams for composite columns.							
Course Learning Outcomes (CLOs): Upon successful completion of the course, the students will be able to –								
will be ab	will be able to –							

CLO 1: Develop knowledge on the fundamental concept of steel concrete composite structures and their advantages.. (PLO1)

CLO 2: Compute axial load capacity and interaction diagrams for composite columns.(PLO3, PLO5)

CLO 3: Analyze composite beams and beam-column connections. (PLO3, PLO5) CLO 4: Design composite beams and beam-column connections. (PLO3, PLO5)

CLO 4: Design composite beams and beam-column connections. (PLO3, PLO5)				
Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy	
Develop knowledge on the fundamental concept of steel concrete composite structures and their advantages.	Introduction to composite structures. Advantages of composite construction. Interaction between steel and concrete. Shear connectors	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	
Compute axial load capacity and interaction diagrams for composite columns.	Axial load capacity and interaction diagrams for composite columns.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	
Analyze composite beams and beam-column connections.	Elastic analysis of composite beams. Beam-column connections. Behavior of different types of composite columns	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	
Design composite beams and beam-column connections.	Beam-column connections. Behavior of different types of composite columns.	Active learning, Multimedia Presentation, Practical example	Class Test, Assignment, Final Exam	

0	Computer	Course Code	CE 454	Credit Hour	1.5
Course Title	Aided Analysis and Design Sessional	Contact Hours/week	3.0	Prerequisite	N/A
This course has been designed to perform software-based analysis and design of Synopsis various reinforced concrete structures and steel structures according to different building codes.					
Course I	Learning Outcom	nes (CLOs): Upon co	mpletion of th	ne course, the stud	ents will be able
CLO 2: A according CLO 3: I and relate	 to – CLO 1: Generate software model for various RCC and steel structure. (PLO5) CLO 2: Assess the performance of an existing reinforced concrete building and steel structure according to BNBC and other building codes.(PLO5, PLO11) CLO 3: Design the reinforced concrete buildings and steel structures according to BNBC, ACI and related building codes. (PLO9, PLO11) CLO 4: Revise an existing structure. (PLO5, PLO9, PLO11) 				
	e Learning mes (CLOs)	Course Cont	tent	Teaching Learning Strategy	Assessment Strategy
Generate model for and steel	e software various RCC	Software-based mode various reinforced con structures and steel stru according to different codes.	ncrete ructures	Lecture, Multimedia & Software Demonstration	Assignments, Lab Report, Class Performance Final Quiz,

			Viva
Assess the performance of an existing reinforced concrete building and steel structure according to BNBC and other building codes.	Software-based performance analysis of various reinforced concrete structures and steel structures according to different building codes.	Lecture, Multimedia & Software Demonstration	Assignments, Lab Report, Class Performance Final Quiz, Viva
Design the reinforced concrete buildings and steel structures according to BNBC, ACI and related building codes.	Software-based analysis and design of various reinforced concrete structures and steel structures according to different building codes.	Lecture, Multimedia & Software Demonstration	Assignments, Lab Report, Class Performance Final Quiz, Viva
Revise an existing structure.	Software-based analysis of Existing structural components.	Lecture, Multimedia & Software Demonstration	Assignments, Lab Report, Class Performance Final Quiz, Viva

Environmental Engineering

<u>Environmental Engineering</u>					
	Solid and	Course Code	CE 411	Credit Hour	2.0
Course Title	Hazardous Waste Management	Contact Hours/week	2.0	Prerequisite	N/A
Synopsis	This course has waste managem	s been designed to di ient.	iscuss the ma	ajor topics of solid a	nd hazardous
to – CLO 1: D CLO 2: E: CLO 3: I (PLO1, P	Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able				
	e Learning nes (CLOs)	Course Cont	tent	Teaching Learning Strategy	Assessment Strategy
Different	iate between waste and	sources and types wastes. Hazardou	entification,	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
solid wa	management process. transport, ultimate disposal methods, resources and energy recovery and recycling, soil pollution, industrial solid waste		Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	
			Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	

Course	Course Environmental	Course Code	CE 413	Credit Hour	2.0
Title	Pollution Management	Contact	2.0	Prerequisite	N/A

		Hours/week			
Synopsis	Synopsis This course has been designed to discuss the major topics of water pollution and air pollution.				
to – CLO 1: E: CLO 2: E PLO10)	CLO 1: Explain sources of water pollution and its control. (PLO1, PLO6) CLO 2: Develop fundamental knowledge about air pollution and its effect on health. (PLO1,				
	e Learning nes (CLOs)	Course Con	tent	Teaching Learning Strategy	Assessment Strategy
Explain water pol control.	sources of lution and its	Water pollution: s types of pollutar assimilation capacity dissolved oxygen ecological balance industrial pollution, l contamination, pollution and eut groundwater polluti pollution, pollutio measures: water monitoring and mana	nts, waste of streams, modeling, of streams, heavy metal detergent rophication, on, marine n control quality	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Develop knowledg pollution on health.	and its effect	Air pollution: source of pollutants, effects pollutants on hum materials and p pollution meteorolog	s of various han health, hants, air	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Indentify effects of pollution.	causes and water and air	Global warming, clir and ozone layer dep rain, air pollution and control introduction to a models.	oletion, acid	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Cou	irse	Environmental	Course Code	CE 415	Credit Hour	2.0
Tit		and Sustainable Management	Contact Hours/week	2.0	Prerequisite	N/A
Syno	opsis	This course has been designed to discuss the major topics of environment and sustainable development.				

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Explain environment and sustainable development. (PLO1, PLO6)

CLO 2: Develop fundamental knowledge about environmental impact assessment of development. (PLO1, PLO10)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Explain environment and sustainable development.	Environment and development projects, environment and sustainable development, environmental policies and legislation, environmental implication of sectorial development.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Develop fundamental knowledge about environmental impact assessment of development.	Environmental quality standards, environmental issues and priorities, environmental impact assessment of development schemes-baseline studies, assessment methodologies.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Identifyissuesofeconomicsofenvironmentalmanagement.	Economics of environmental management, contemporary issues; case studies.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

CLO 3: Identify issues of economics of environmental management. (PLO8)

Course	Environmental	Course Code	CE 414	Credit Hour	1.5
Title	Engineering Lab Contact 3.0 II Hours/week 3.0		Prerequisite	N/A	
Synopsis This course has been designed to discuss the major topics of the design of water supply and sewerage system.					
Course I	earning Outcom	es (CLOs): Upon com	pletion of the	course, the stud	ents will be able
to –					
CLO 1: C	alculate water dem	ands of an industrial are	ea. (PLO5)		
CLO 2: D	esign water and wa	stewater network. (PL	03)		
CLO 3: A	pply knowledge of	water treatment technic	ques in the fiel	d. (PLO11)	
Course Content Learning				Assessment Strategy	
Calculate	e water demands	Design of water	supply and	Lecture,	Assignments,
of an indu	strial area.	sewerage system: es	timation of	Calculation,	Report, Viva,

	industrial, domestic and fire demands, designing deep tube well and water distribution network, estimation of industrial, domestic and commercial wastewater generation.	Handouts	Final Quiz
Design water and wastewater network.	Wastewater network design, household plumbing system design, design of water and wastewater treatment plant.	Lecture, Calculation, Handouts	Assignments, Report, Viva, Final Quiz
Apply knowledge of water treatment techniques in the field.	Computer application in environmental engineering, field visits and reporting.	Lecture, Calculation, Handouts	Assignments, Report, Viva, Final Quiz

Geotechnical Engineering

Course Title	Earth Retaining	Course Code	CE 421	Credit Hour	2.0
	Structures	Contact Hours/week	2.0	Prerequisite	N/A
Synopsis	This course has been designed to design earth retaining structures such as dam, embankment, retaining wall, sheet piles etc. and construction methods also. Foundation of structures subjected to lateral loads; rigid and flexible earth retaining structures; methods of construction: dewatering and slurry-wall construction, braced excavation, sheet piles, cofferdams, caissons.				
		es (CLOs): Upon succes	sful c	ompletion of the cour	se, the students
will be able to					
	op knowledge	on the fundamental conc	ept of	lateral loads exerted	by soil.
(PLO1)					02 DI 05)
1	1	ameters and loads on ear at types of earth retaining		U (, ,
PLO5)	ze the unifieren	it types of earth fetalling	g suu	ctures and then applied	ations. (FLO3 ,
	n the different	types of earth retaining s	tructu	res. (PLO3, PLO5)	
Course Le				Teaching Learning	Assessment
Outcomes	(CLOs)	Course Content		Strategy	Strategy
Develop knowledge on the fundamental concept of lateral loads exerted by soil.				Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
r	parameters and loads on earth retaining retaining structures Rigid and flexible earth retaining structures Einal Exa				
types of earth	es of earth retaining Dewatering and slurry-wall Hand/Multimedi		Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam	

applications.	excavation, sheet piles, cofferdams, and caisson.		
Design the different types of earth retaining structures.	Braced excavation, sheet piles, cofferdams, and caisson.	Active learning, Multimedia Presentation, Practical example	Class Test, Assignment, Final Exam

0	0 11W /	Course Code	CE 425	Credits	2.0	
Course Title	Soil Water interaction	Contact Hours/week	2.0	Prerequisite	N/A	
Synopsis	interaction issues followed by the This course also different geotech	This course has been designed to discuss the major topics of soil-water interaction issues such as permeability, capillarity and soil suction. This is followed by the analysis of slopes subjected to water current, wave action etc. This course also covers the theories of filters and revetment design. Finally, different geotechnical aspects of landfills design are introduced to provide students a good understanding.				
Course Learning Outcomes (CLOs): Upon successful completion of the course, the students will be able to – CLO 1: Identify water related problems on earthen structures and foundation soil. (PLO1) CLO 2: Analyze the stability of earth slope subjected to water current and water wave. (PLO1, PLO5) CLO 3: Design earth slope protection system and also can design revetment and filter (the granular and textile filter). (PLO3, PLO5) CLO 4: Explain landfills and can design landfills (geotechnical part). (PLO3, PLO5)						
Course Lea	rning Outcomes CLOs)	Course Content		Teaching Learning Strategy	Assessment Strategy	
Identify problems structures soil.	water related on earthen and foundation	Introduction to soil- interaction, perme capillarity and soil sucti	ability,	Classroom instruction, Active learning, Practical example.	Class Tests, Assignment, Final Exam	
Analyze the earth slope water curre wave.		Earth slopes subject water current, wave acti		Classroom instruction, Active learning, Practical example.	Class Tests, Assignment, Final Exam	
protection s	earth slope system and also revetment and granular and b.	Theories of filters revetment design, des revetment components.		Classroom instruction, Active learning, Practical example.	Class Tests, Assignment, Final Exam	

Explain landfills and can design landfills (geotechnical part).	(ieotechnical	design	of	Classroom instruction, Active learning, Practical example.	Class Tests, Assignment, Final Exam
--	----------------	--------	----	---	---

Course	Elementary	Course Code	CE 423	Credit Hour	2.0
Title	Soil Dynamic	s Contact Hours/week	2.0	Prerequisite	N/A
	This course h	as been designed to disc	uss the	major topics of eleme	entary vibrations;
Synopsis		perties of soil, seism , liquefaction problems, r			
Course Learning Outcomes (CLOs): Upon completion of the course, the students will be					
able to -	-	-	-		
CLO 1: Exp	olain dynamic p	roperties of soil. (PLO1)		
CLO 2: Dep	pict seismic resp	ponse of soils. (PLO1, P	PLO3)		
		ion problems. (PLO3, P			
CLO 4: Dev	velop knowledg	e of earthquake hazards.	(PLO	1)	
Course Learning Outcomes (CLOs)		Course Content		Teaching Learning Strategy	Assessment Strategy
Explain properties o		Elementary vibra dynamic properties of se	tions, pil.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Deniat		Seismic response of	soils:	Lecture,	Class Tests,
Depict	seismic	site effects,	site	Hand/Multimedia	Assignment,
response of	SOIIS.	amplification.		Demonstration	Final Exam
Calanlata	liquefaction	Liquefaction much	lama	Lecture, Hand	Class Tests,
		Liquefaction prob remedial measures.	olems,	Calculation	Assignment,
problems.		remedial measures.		Calculation	Final Exam
Develop k	nowledge of			Lecture,	Class Tests,
earthquake		Earthquake hazards.		Hand/Multimedia	Assignment,
cartiquake	nazarus.			Demonstration	Final Exam

Course Title	Geotechnical	Course Code	CE 427	Credit Hour	2.0
	Earthquake Engineering	Contact Hours/week	2.0	Prerequisite	N/A

Synopsis	This course has been designed to discuss the major topics of cyclic response of soils, local site effects, wave propagation through soil, site response analysis, liquefaction and post liquefaction behavior; seismic hazard analysis, seismic soil-structure interaction of foundations.					
Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to – CLO 1: Develop knowledge cyclic response of soils. (PLO1) CLO 2: Explain liquefaction behavior of soil. (PLO3, PLO10)						
	CLO 3: Analyze seismic hazards. (PLO1, PLO5, PLO10)					
	e Learning nes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy		
Develop cyclic resp	knowledge oonse of soils.	Cyclic response of soils, local site effects, wave propagation through soil, site response analysis.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam		
Explain behavior o	liquefaction of soil.	Liquefaction and post liquefaction behavior of soil.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam		
Analyze	seismic	Seismic hazard analysis, seismic	Lecture, Hand	Class Tests, Assignment,		

~	Geotechnical	Course Code	CE 424	Credits	1.5	
Course Title	Engineering Lab- II	Engineering Contact 2.0 Provide				
Synopsis This subject is intended to provide students with a clear and thorough understanding of how to design building foundations (footing, pile and pile cap, pier, raft/mat foundations and caisson) with modern computer tools. This course also covers the major topics of Computer aided design of retaining structures (shore pile, abutment and retaining walls) and reinforced soils. This course provides the participants with an opportunity to apply the design procedures to a "real life" challenging foundation design projects.						
Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able						
to – CLO 1: Comprehend and utilize the geotechnical literature to establish the frame work for foundation design. (PLO5 , PLO9)						
		contextual factors and	constraints to	select appropria	te geotechnical	

solutions to complex problems. (**PLO5**, **PLO11**) CLO 3: Analyze the role of a geotechnical engineer in civil engineering projects. (**PLO9**, **PLO11**)

Course Learning	Course Content	Teaching Learning	Assessment
Outcomes (CLOs)		Strategy	Strategy

Comprehend and utilize the geotechnical literature to establish the frame work for foundation design.	Interpretation Design Data and soil data of building foundations using foundation engineering theories.	Classroom instruction by Hand/Multimedia Demonstration, Active learning, Practical design work.	Class performance grading, Assignment, Final Exam
Assess site specific contextual factors and constraints to select appropriate geotechnical solutions to complex problems.	Design work of building foundations and retaining structure using computer tools.	Classroom instruction by Hand/Multimedia Demonstration, Active learning, Practical design work.	Project report evaluation, Final Exam
Analyze the role of a geotechnical engineer in civil engineering projects.	Detailing of design work and the role of a geotechnical engineer in civil engineering projects.	Classroom instruction by Hand/Multimedia Demonstration, Active learning, Practical design work.	Assignment, Final Exam

Transportation Engineering

Course	Traffic Planning	Course Code	CE 431	Credit Hour	2.0		
Title	and Management	Contact Hours/week	2.0	Prerequisite	CE331, CE 333		
Synopsis	Engineering suc concepts; traffic separation and i	h as—The transport accident investiganterchanges, pedest	Management Hours/week 333 This course has been designed to discuss the major topics of Transportation Engineering such as—The transportation planning process; traffic management concepts; traffic accident investigations; city road and street networks: grade separation and interchanges, pedestrian and bicycle facilities, The urban bypass; environmental aspects of highway traffic and transportation projects; elements of				

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Determine transportation planning framework and basic principles (PLO1)

CLO 2: Explain transportation planning phases and transport demand analysis (PLO1, PLO5)

CLO 3: Design sustainable strategies for pedestrian and bicycle facilities. (PLO3, PLO8)

CLO 4: Apply different road safety techniques suitable for Bangladesh to mitigate road accidents. (PLO8)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Determine transportation planning framework and basic principles	Transportation Planning Process: Framework, Basic Principles of Transportation Planning	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Explain transportation planning phases and transport demand analysis	Transportation Planning Process: Phases and Analysis, Data Collection for Transportation Projects,	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

	Transportation Demand Analysis		
Design sustainable strategies for pedestrian and bicycle facilities.	Design of Pedestrian Facilities, Bicycle Facilities, Design and Planning of Urban Bypass	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Apply different road safety techniques suitable for Bangladesh to mitigate road accidents.	Factors affecting Traffic Accident, Development of Accident Countermeasures, Hazardous Road Locations, Systematic Accident Investigation, Road Safety Engineering Strategies	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

	Pavement	Course Code	CE 433	Credit Hour	2.0	
Course Title	Management, Drainage and Airport	Contact Hours/week	2.0	Prerequisite	N/A	
Synopsis	Airport This course has been designed to discuss the major topics of transportation and traffic engineering such as (I) Study of pavement management system, design highway drainage system and different components of airport pavement and i design methodology. Pavement management systems; evaluation and strengthenin of pavements; drainage; highway drainage and drainage structures; airport					

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Develop knowledge on the fundamental concept of airport system and highway management.(PLO1)

CLO 2: Compute volume and highway distress level.(PLO1, PLO5)

CLO 3: Analyze different technologies to provide treatment for highway distress and properly manage. (PLO3, PLO5)

CLO 4: Design of airport runway system and highway drainage structures.(PLO5)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Develop knowledge on the fundamental concept of airport system and highway management.	Introduction to Pavement management systems. Evaluation of highway pavement and different methodology and their using. Introduction to airport and air traffic system.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Compute volume and highway distress level.	Strengthening of highway pavements and repairing techniques.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Analyze different technologies to provide treatment for highway distress and properly manage.	Strengthening of highway pavements and repairing techniques. highway drainage and drainage structures	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Design of airport runway system and highway drainage structures.	Importance, advantages and trends in air transportation. Planning and design of airports. Aircraft characteristics related to airport design. Airport configuration, geometric design of the landing area, terminal area, heliports. Design of airport pavements, lighting, marking and signing, airport drainage	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Course	Urban Transportation	Course Code	CE 435	Credit Hour	2.0
Title	Planning and Management	Contact Hours/week	2.0	Prerequisite	N/A
Synopsis	such as—The ur characteristics and transit network; evaluation, transit metropolitan cities	een designed to discuss ban transport probler l operation of differen estimating system cos users attitude, policies ; freight traffic plannin n management; safety ort.	ns and trend at transit and sts and benef and strategie g and manage	s; road netwo paratransit mo fits, pricing a s for transit do ment; selected	ork planning; odes, planning nd financing, evelopment in transport case

Course Learning Outcomes (CLOs): Upon successful completion of the course, the students will be able to –

CLO 1: Explain characteristics of urban transport, paratransit modes. (PLO1)

CLO 2: Determine causes and remedies of urban congestion. (PLO3, PLO5)

CLO 3: Evaluate cost benefit of transportation projects (PLO3, PLO5)

CLO 4: Explain sustainable transportation system and environmental issues (PLO1, PLO10)

Course Learning Outcomes (CLOs) Course Content		Teaching Learning Strategy	Assessment Strategy
Explain characteristics of urban transport, paratransit modes.	Introduction to urban transport problems and trends; road network planning	Classroom instruction, Active learning	Class Tests, Assignment, Final Exam
Determine causes and remedies of urban congestion.	Congestion management; safety management, selected transport case studies	Classroom instruction, Active learning	Class Tests, Assignment, Final Exam
Evaluate cost benefit of transportation projects	Planning transit network; estimating system costs and benefits, pricing and financing, evaluation, transit users attitude, policies and strategies for transit development in metropolitan cities	Classroom instruction, Active learning	Class Tests, Assignment, Final Exam

Explain sustainable transportation system and environmental issues	Transit users' attitude, policies and strategies for transit development in metropolitan cities; environmental issues and sustainable transport.	Classroom instruction, Active learning, Practical example
---	--	--

Course	Transportation	Course Code	CE 434	Credit Hour	1.5
Title	Engineering Lab II	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	This course has been designed to discuss the major topics of Transportation Engineering such as—Design of rigid and flexible highway and air field pavements; geometric design: road intersections and interchanges; capacity calculations; traffic studies and design.				

Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –

CLO 1: Determine spot mean speed and time mean speed from field survey data (PLO5)

CLO 2: Design of airport pavement using AC 150/5320-6E. (PLO11)

CLO 3: Calculate traffic volume by manual and video survey method. (PLO5)

CLO 4: Design of flexible pavement using RHD method and rigid pavement using PCA method. (PLO11)

CLO 5: Apply field data obtained from traffic survey to plan a signalized intersection and traffic control project. (**PLO9**, **PLO11**)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Determine spot mean speed and time mean speed from field survey data	Speed Studies - Spot Speed Studies (Time-Mean Speed), Speed Studies – Space-Mean Speed	Lecture, Multimedia, Hand Note & Reference Books	Assignments, Lab Report, Final Quiz, Viva
Design of airport pavement using AC 150/5320-6E.	Airfield pavement design using FAA, AC-150	Lecture, Multimedia Lab Manual & Reference Books	Assignments, Lab Report, Final Quiz, Viva
Calculate traffic volume by manual and video survey method	Traffic Volume - Vehicle Classification Studies – Manual, Traffic Volume Studies – Intersections Manually	Lecture, Multimedia, Hand Note & Reference Books	Assignments, Lab Report, Final Quiz, Viva
DesignofflexiblepavementusingRHDmethodandrigidpavementusingPCAmethod.	Highway pavement design, Parking Study.	Lecture, Multimedia Lab Manual & Reference Books	Assignments, Lab Report, Final Quiz, Viva
Apply field data obtained from traffic survey to plan a signalized intersection and traffic control project.	Traffic Volume Studies – Intersections Manually, Pedestrian Volume Count Study, Intersection Delay Study, Intersection Design and Control Project	Lecture, Multimedia, Hand Note & Reference Books	Assignments, Lab Report, Final Quiz, Viva

Water Resources Engineering					
Course	Ground Water	Course Code	CE 443	Credit Hour	2.0
Title	Engineering	Contact Hours/week	2.0	Prerequisite	N/A
Synopsis	equations of po	rties of groundwate prous media flow and le of groundwater in	mass transp	ort, well hydraulics	and pumping
to – CLO 1: B CLO 2: D and transp CLO 3: A CLO 4: D	cearning Outcon be Familiar with th Develop knowledg Dort. (PLO1, PLO pply groundwates evelop knowledg	nes (CLOs): Upon c the terminology associa e about the porous m 55) r flow equations to con e about the hydraulics f Ground Water. (PLC	ated with Gro nedium prope nfined and un of different l	ound Water Engineeri orties that control gro confined aquifers. (F	ing. (PLO1) oundwater flow PLO3)
Cours	e Learning nes (CLOs)	Course Cont		Teaching Learning Strategy	Assessment Strategy
Be Familiar with the terminology associated with Ground Water Engineering.		Origin and age of Gr Rock properties Groundwater, Zone and Saturation, Aquifers, Storage Groundwater Basins,	affecting of Aeration Types of coefficient,	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Develop knowledge about the porous medium properties that control groundwater flow and transport.		Hydraulic Co	ermeability, onductivity, roundwater ion.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
	groundwater quations to and unconfined	Principles and f equations of porous and mass transport.	undamental media flow	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Develop knowledge about the hydraulics of different kinds of wells		Methods of c Shallow wells and De	to a well, well logs, constructing eep Wells.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Evaluate Ground W	Quality of Vater	Role of Groundwa hydrologic cycle, S salinity, Measures quality, Chemical an Analysis,	Sources of of water	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

	Water	Resources	Engineering
--	-------	-----------	-------------

Course River Title Engineering	River	Course Code	CE 445	Credit Hour	2.0
		Contact Hours/week	2.0	Prerequisite	N/A

	Behavior of alluvial rivers; river channel pattern and fluvial processes; aggradations
Synopsis	and degradation, local scours, river training and bank protection works; navigation
	and dredging sediment movement in river channels, bed form and flow regimes.

Course Learning (Dutcomes (CLOs): Upon completion of the course, the students	will be able
to –		

CLO 1: Develop knowledge about river dynamics and engineering (PLO1)

CLO 2: Develop creative river engineering design skills (PLO3)

CLO 3: Formulate river engineering related problems (PLO5)

Course Learning	Course Content	Teaching Learning	Assessment
Outcomes (CLOs)		Strategy	Strategy
Develop knowledge about river dynamics and engineering	Scope of River Engineering ;Classification and use of rivers ; Hydraulic characteristics of alluvial rivers; Classification of river flow	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Develop creative river engineering design skills	Hydrologic routing; Reservoir	Lecture,	Class Tests,
	routing (Euler and Runge-Kutta	Hand/Multimedia	Assignment,
	methods); Channel Routing	Demonstration	Final Exam
Formulate river engineering related problems	Fundamental aspects of sediment transport; Morphological characteristics of rivers. River stabilization/improvement; Bank and bed protection facilities	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

-						
Course	Hydraulic	Course Code	CE 447	Credit Hour	2.0	
Title	Structure	Contact Hours/week	2.0	Prerequisite	N/A	
	Principles of d	esign hydraulic struc	tures, types o	of hydraulic structur	es; design of	
Synopsis	dams, barrages	, weirs, spillways,	energy dissip	paters and spillway	gates; cross	
	drainage works					
Course I	Learning Outcom	nes (CLOs): Upon c	ompletion of	the course, the stude	nts will be able	
to –	to –					
CLO 1: D	efine basic theori	es of hydraulic struct	ure design co	ncepts- dams, culver	ts, siphons, etc.	
(PLO1)	(PLO1)					
CLO 2: Id	CLO 2: Identify seepage under hydraulic structures and protection methods. (PLO1)					
CLO 3: Analyze and design different hydraulic structures dams, culverts, siphons, and reservoir.						
(PLO3)						
CLO 4: Justify the series steps taken to solve the hydraulic structures problems. (PLO5)						
Cours	Course Learning Course Content Teaching Learning Assessment					
Outcor	nes (CLOs)	Course Con	iem	Strategy	Strategy	
Define ba	asic theories of	Scope of hydraulic e	ngineering;	Lecture,	Class Tests,	

Department of Civil Engineering * 195

Hand/Multimedia

Demonstration

Assignment, Final Exam

Dam hydraulics; Review of

basic concepts in Hydraulics.

hydraulic

design concepts- dams,

structure

culverts, siphons, etc.			
Identify seepage under hydraulic structures and protection methods.	Design discharge of spillway; Overflow types ; Frontal overflow; Side channel. Chute ; Free fall ; Cascade spillway	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Analyze and design different hydraulic structures dams, culverts, siphons, and reservoir	Hydraulic jump and stilling basin ; Drop structure and plunge pools	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Justify the series steps taken to solve the hydraulic structures problems.	Design of septic tank system. Activated sludge process. Trickling filter design.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Comme	Coastal	Course Code	CE 449	Credit Hour	2.0
Course Title	Engineering	Contact Hours/week	2.0	Prerequisite	N/A
Synopsis Synopsis Coast and coastal features; tides and currents; tidal flow measurement; waves and its characteristics; forces of waves and tides in the design of coastal and harbor structures; coastal water level fluctuation - storm surge, tsunami and basin oscillation; coastal zone processes; deltas and its characteristics; estuary and estuary control; docks and harbors; design of shore protection works					
Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able					
to –					
CLO 1: Calculate sea state parameters (wave height, wave period, water levels- storm surge).					
(PLO5)					
CLO 2: Describe measurement systems for measuring/estimating waves, tides. (PLO3)					
CLO 3: Develop knowledge about harbor planning, coastal sediment transport processes and its					
estimation. (PLO1, PLO5)					
CLO 4: Develop knowledge about different types of shore protection works and design principles. (PLO3)					

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Calculate sea state parameters (wave height, wave period, water levels- storm surge).	Coastal zone of Bangladesh and its management, Tides and currents, tidal flow measurement	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Describe measurement systems for measuring/estimating waves, tides.	Tidal characteristics of Bangladesh.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Develop knowledge about the harbor planning, coastal sediment transport processes and its estimation.	Docks and harbors, Storm surge, Tsunami.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam
Develop knowledge about different types of shore protection works and design principles.	Different types of Shore protection works, Design of shore protection works.	Lecture, Hand/Multimedia Demonstration	Class Tests, Assignment, Final Exam

Course	Water	Course Code	CE 448	Credit Hour	1.5
Title	Resources Engineering Lab	Contact Hours/week	3.0	Prerequisite	N/A
Synopsis	Synopsis This course has been designed to discuss the major topics of water resources engineering such as - design of hydraulic structures, river training works. Ground water resource assessment and water well design.				
Course Learning Outcomes (CLOs): Upon completion of the course, the students will be able to –					

CLO 1: Design hydraulic structures including its stability and maintenance. (PLO3)

CLO 2: Introduce the need for river training and techniques for bank stabilization.(PLO5)

CLO 3: Analyze groundwater data and understand groundwater quality, availability. (PLO2)

CLO 4: Determine well location, design and installation of well. (PLO9, PLO11)

Course Learning Outcomes (CLOs)	Course Content	Teaching Learning Strategy	Assessment Strategy
Design hydraulic structures including its stability and maintenance.	Classification of hydraulic structures, Design and construction of hydraulic structure (dams), Flood control, Irrigation.	Lecture, Hand/Multimedia Demonstration, Practical Exercise.	Assignment, Viva, Quizzes
Introduce the need for river training and techniques for bank stabilization.	Importance of river training. Different modes of river bank failure, Techniques for bank stabilization, Different approaches of waterway control.	Lecture, Hand/Multimedia Demonstration	Assignment, Viva, Quizzes
Analyze groundwater data and understand groundwater quality, availability.	Groundwater resource classification, Groundwater- Surface water interactions, Groundwater recharge, Water quality assessment.	Lecture, Hand/Multimedia Demonstration	Assignment, Viva, Quizzes
Determine well location, design and installation of well.	Water well basics, Components of a well, Studies on well location, Water well design and installation, Well development, Wellhead protection.	Lecture, Hand/Multimedia Demonstration	Assignment, Viva, Quizzes